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ABSTRACT

Landslides were frequently observed in nature that can result in significant property damage and
fatalities. Land management in landslide-prone areas can be aided by preparing a landslide
susceptibility map. The landslide susceptibility of Chaliyar river basin was evaluated using the
logistic regression (LR) technique. For this, an inventory map of 592 prior landslides was created
using Landsat 8 OLI satellite imagery. The inventory of landslides was then randomly split into 30%
and 70% for model training and validation respectively. Fifteen landslide causative factors viz.,
Slope, Aspect, Curvature, Relative Relief, TWI, Distance to Road, Distance to Streams, Distance to
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Lineaments, Land Use Land Cover, Drainage Density, Road Density, Lineament Density,
Geomorphology, Soil Texture, NDVI were considered for landslide susceptibility modelling. Utilising
a Receiver Operating Characteristics Curve (ROC) and Area Under Curve (AUC) value, the
resulting susceptibility maps were validated. Analysis reveals that the validation stage of the LR
model had a ROC-AUC value of 0.815. The study also demonstrates that slope, soil texture and
LULC play a substantial role on the occurrence of landslides in the study area. The proposed
landslide susceptibility model is appropriate, taking into account the ROC-AUC (0.815), and can be
applied to future land use planning and landslide mitigation in the Chaliyar basin.

Keywords: Landslide susceptibility; logistic regression; causative parameters; ROC-AUC; chaliyar
river basin.

1. INTRODUCTION

Landslides were a disastrous natural hazard that
frequently result in fatalities and significant
property damage in hilly Western Ghats regions
[1-4]. To reduce the damage and fatalities
caused by landslides, accurate forecasting and
susceptibility mapping were recognised as
crucial and necessary [5]. due to the
complexity of landslides, which were influenced
by an amalgamation of some or all of the
causative factors such as bedrock, climate,
hydrology, soil condition, and even human
activities, producing reliable spatial prediction
and assessment of landslides susceptibility is a
difficult [6]. quality of Landslide
Susceptibility Maps (LSM) is also significantly
impacted by the modelling techniques [7].

to the complexity and accessibility of the
data, many researchers have developed
methods for creating maps of landslide

[8,9]. on regional geo-
environmental parameters, LSM define the
spatial distribution of the likelihood of a landslide
in a given area. There is a Landslide
Susceptibility Index (LSI) value assigned to each
pixel of the [10].

quantitative techniques were used to
evaluate landslide [11]. The
majority of them have as their primary objective
as the identification of the factors that contribute
to the occurrence of landslides, the evaluation of
the significance of controlling factors and the
classification of the study area according to
landslide susceptibility. With the presumption that
slope collapses in the future will be more likely to
occur under conditions that contributed to
historical and present instability, statistical
analysis is still the most popular technique for
larger areas. In the last few decades, a number
of statistical methods have been applied to
landslide susceptibility assessment, such as the
Logistic Regression (LR) method [12],

discriminant analysis [13], Weights of Evidence
(WoE) Model [14], Artificial Neural Network
(ANN) method [15,16], fractal method [17], fuzzy
logic [18], Support Vector Machines (SVM) [19],
etc. consensus has been achieved on the
optimal strategy or method, despite the fact that
numerous techniques have been shown to be

[20]. LR model has been widely
used in landslide susceptibility mapping by many
studies because it is particularly efficient and
reliable for expressing problems with binary
variables (such as the existence or absence of

[21].

By identifying and mapping the slide locations
and the related topography parameters, the
current work shows how Logistic Regression
(LR) may be applied to build a landslide
susceptibility zonation map for the Chaliyar river
basin in Kerala at a scale of 1:50,000 for the
study area. The objective of this study is to
generate the landslide susceptibility map and
validate the applicability of the LR model in the
Chaliyar basin.

2. MATERIALS AND METHODS

2.1 Study Area

Chaliyar river basin in Kerala, India, situated
between 11°06´ 11°36´N and longitude 75°48´
76°33´E falls in Survey of India (SOI) toposheets
58A and 49M (Fig. 1) The river originates from
the Western Ghats mountain range and flows
through the districts of Wayanad, Malappuram,
and Kozhikode before emptying into the Arabian
Sea. The basin is characterized by a diverse
landscape, ranging from the hilly terrain of the
Western Ghats to the coastal plains near the
Arabian Sea. The region experiences a tropical
monsoon climate, with heavy rainfall during the
southwest monsoon season (June to September)
and a relatively drier period from October to
December.
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The Chaliyar river basin, like many other hilly
regions, is susceptible to landslides due to its
topography, geological characteristics, and
monsoon rainfall patterns. Landslides can occur
in various forms, including rockfalls, debris
slides, and slope failures, posing risks to human
lives, infrastructure, and the environment.
Ongoing monitoring and periodic reassessment
of landslide susceptibility in the Chaliyar river
basin were also essential to adapt to changing
conditions and minimize the potential impacts of
landslides.

2.2 Identification of the Causative Factors
of Landslide

were no fixed guidelines for selecting the
parameters that influence landslides in
susceptibility [22]. The causative
factors were selected based on previous
landslide studies [23-25], the scale of analysis,
and data availability, in the basin. At first, we
reviewed the literature and government reports
related to landslide susceptibility mapping in
Kerala [26-28]. After that, the most significant

landslide-related spatial and attribute data,
namely geomorphology, soil type, Land Use
Land Cover (LULC), slope angle, aspect,
curvature, relative relief, Topographic Wetness
Index (TWI), distance to lineaments, distance to
streams, distance to roads, drainage density,
lineament density, drainage frequency, road
frequency, lineament frequency and Normalized
Difference Vegetation Index (NDVI), were
selected based on the previous research
conducted in Kerala. Multi-collinearity among the
selected landslide causative factors were
analyzed and thereafter the factors critical for the
study area were selected.

geomorphology map of the study area was
gathered from Kerala State Remote Sensing and
Environment Centre (scale 1:50,000). Land
use/land cover data of the study area were
collected from the Kerala State Land Use Board
(scale 1:50,000). Terrain parameters, such as
slope angle, aspect, curvature, relative relief,
streams, lineaments and TWI were calculated
from the ASTER GDEM (30m resolution). Soil
texture data of the study area were collected

Fig. 1. Location map of the study area showing the elevation and landslide inventory
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from the Department of Soil Survey & Soil
Conservation. Roads data were collected from
KSDMA, Trivandrum. NDVI map was prepared
using Landsat 8 Operational Land Imager (OLI)
satellite data obtained from the United States
Geological Survey (USGC). All causative factor
maps were converted into raster maps with the
same coordinate system (WGS 1984 UTM zone
43N) and the same pixel size (30 mx30 [29].
Fig. 2 shows the various thematic layers of the
causative factors used in this study. The
rasterized training (70%) landslide map and all
the causative factor maps have been added to
the LR model in SPSS software to calculate the
ratings or weights of all factor classes. The
summation of these ratings or weights of each
landslide factor will help to evaluate the spatial
relationship between them and the probability of
landslide occurrence in the study area.

2.2.1 Multi-collinearity in logistic regression

impact of correlation among independent
variables is a crucial factor in regression. When
two independent variables were very closely
associated, there is a problem. The issue is
referred to as multi-collinearity. Two crucial
indices for multi-collinearity diagnosis were
tolerance and the Variance Inflation Factor (VIF).
Actually, tolerance is 1-R2 when a variable is
regressed against all other independent variables
without the dependent variable. VIF, on the other
hand, is merely the inverse of tolerance. VIF
assesses how much the variance of the
estimated regression coefficient for the variable
is inflated by the interdependence of the variable
with other predictor variables. As a result, the
amount that collinearity has raised the variable's
standard error is represented by the squwere
root of the VIF. A tolerance of less than 0.20 or
0.10 and/or a VIF of 5 or 10 and above indicates
a multi-collinearity [19,30,31].

2.3 Landslide Susceptibility Mapping

Landslide Susceptibility Mapping (LSM) in the
Chaliyar river basin can be a valuable tool for
assessing the vulnerability of the region to
landslides and facilitating effective land use
planning and disaster risk management. The
steps involved in the LSM involves:

Data Collection: Gather various types of
data, including topographic data,
geological maps, land cover information,
rainfall patterns, soil characteristics, and
existing landslide records. Remote sensing

data from satellite imagery can also be
used to assess land cover changes and
terrain features.
Landslide Inventory: landslide inventory
map is prepared with the aid of multiple
sources; (1) National Remote Sensing
Center (NRSC), of the Indian Space
Research Organization (ISRO), (2)
Geological Survey of India (GSI) in
collaboration with the Kerala State Disaster
Management Authority (KSDMA), (3)
BHUVAN (Indian earth observation
visualization), a web-based geospatial
platform developed by the Indian Space
Research Organization (ISRO)
(bhukosh.gsi.gov.in). A total of 592
landslides were identified and divided into
70% 30% proportion for training and
testing the [32,33].
Geospatial Analysis: Utilize Geographic
Information Systems (GIS) software to
integrate and analyze the collected data
layers. Analytical techniques such as
statistical analysis, multi-criteria evaluation,
and weighted overlay can be applied to
identify the factors contributing to
landslides and their relative importance.
Landslide Susceptibility modeling: Develop
a landslide susceptibility model using the
analyzed data. This can involve different
methods, including statistical approaches
(e.g., logistic regression, frequency ratio,
or Bayesian techniques) or physically
based models (e.g., slope stability analysis
using geotechnical parameters). The
model should assign susceptibility values
to different areas within the Chaliyar river
basin, indicating the likelihood of landslide
occurrence. Here in this study, a
multivariate statistical model called Logistic
Regression (LR)model was used.
Validation: the landslide
susceptibility model by comparing the
predicted landslide susceptibility areas with
the known landslide locations from the
inventory. This step helps assess the
accuracy and reliability of the model and
can be refined iteratively. The validation of
the landslide susceptibility map was
evaluated by calculating the relative
operative characteristic (ROC) method and
the percentage of the observed landslide in
various susceptibility categories. The area
under the curve (AUC) of the ROC
represents the quality of the probabilistic
model (its ability to predict the occurrence
or non-occurrence of an [34].
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AUC value close to 1 indicates high
accuracy, and an AUC value close to 0.5
indicates [35].
Mapping and Zonation: Based on the
validated model, generate landslide
susceptibility maps for the Chaliyar River
basin. These maps categorize different
areas into zones representing different
levels of landslide susceptibility, typically
using a color-coded scheme [36]. In this
study, final LS map is again segmented in
to five classes using the expert opinion
from KSDMA to yield five susceptibility
levels such as very low, low, moderate,
high and very high.

2.3.1 Logistic Regression (LR) model

analysis is considered as one of the most
popular multivariate regression analysis used to
investigate a binary response from a set of
measurements using forward [37].
the case of landslide susceptibility mapping, the
set of measurements will be landslide-causative
factors (either discrete or continuous) and binary
response is the presence and absence of
landslide [38]. the ideal
model to explain the association between a
dependent variable and a number of
independent factors is the aim of logistic

[39]. benefit of logistic

regression is that, unlike traditional linear
regression, where the variables must all have
normal distributions, it allows for the inclusion of
both continuous and discrete variables as well as
any mix of the two. After converting the
dependent variable into a logic variable that
represents the natural logarithm of the probability
of the dependent (landslide) occurring or not, the
logistic regression technique performs maximum
likelihood [40].

The mathematical expression of the LR model is
as follows [41,42].

P =

where p is the probability of occurrence of
landslides or non-landslides, e is the exponent
and z is the linear combination. The probability
value ranges from 0 to 1 on an S-shaped curve.
The linear combination has been shown in
the following equation:

Z =

where 0 represent the intercept of the curve and
n is the number of independent variable, i (i = 1,
2, 3, n) is the slope coefficient, and Xi (i = 1,
2, 3, n) is the independent variable.

Fig. 2. Flowchart of the LSM preparation
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3. RESULTS AND DISCUSSION

3.1 Multicollinearity Analysis

In the present study, the multi-collinearity
between each landslide causative factor were
estimated and presented in Table 1. As shown in
Table 1, the tolerance value of drainage
frequency, lineament frequency and road
frequency were found to be 0.13, 0.156 and
0.147 respectively. So, factors whose tolerance
value <0.2 should be eliminated for the smooth
data analysis.

3.2 Selected Causative Factors

Out of 18 causative factors, three factors were
eliminated. The thematic layers of the selected
causative factors were shown in Fig. 3.

3.3 Logistic Regression Model

The statistical package for the social sciences
(SPSS) was used to carry out the binary logistic
regression analysis. All the causative factors and
landslides were transformed into grid format and
subsequently into ACSII data format in order to
process the input data layers [43]. The binary
logistic regression model was performed in
SPSS using the ASCII data of each map to get
the coefficients of the landslide causative factors
for both numerical and categorical data. The
Hosmer and Lemeshow test revealed that since
the significance of chi-square is more than 0.05
(1.00), the equation's goodness of fit can be
accepted. Cox and Snell R2 (0.380) and
Nagelkerke R2 (0.507) values demonstrated that
independent variables can partially explain
dependent variables.

Table 1. Multi-collinearity among the selected factors

Sl. No Landslide causative factors Collinearity Statistics
Tolerance VIF

1 Slope 0.374 2.671
2 Aspect 0.990 1.010
3 Curvature 0.925 1.082
4 Relative Relief 0.272 3.674
5 TWI 0.748 1.336
6 Distance to streams 0.767 1.304
7 Drainage density 0.845 1.183
8 Drainage frequency 0.13 7.690
9 Distance to roads 0.715 1.398
10 Road density 0.951 1.051
11 Road frequency 0.147 6.802
12 Distance to lineaments 0.896 1.117
13 Lineament density 0.948 1.055
14 Lineament Frequency 0.156 6.582
15 Soil Texture 0.894 1.119
16 Geomorphology 0.478 2.092
17 LULC 0.842 1.189
18 NDVI 0.918 1.090

Table 2. Model summary

Step -2 Log likelihood Cox & Snell R Squwere Nagelkerke R Squwere
1 751.609a .380 .507
a.Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution

cannot be found

Table 3. Hosmer and lemshow test

Hosmer and Lemeshow Test
Step Chi-squwere df Sig.
1 13.661 8 .091
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Fig. 3. Fifteen landslide causative factors used in the study
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The coefficient of each causative factor is
shown in Table 4. According to Table 4, it is
observed that normalized different vegetation
index (NDVI), Geomorphology, distance from
lineaments, lineament density, TWI, relative relief
and curvature have negative effect in the
landslide susceptibility mapping of study area,
because of negative value. The values of
these causative factors were -0.62, -0.02,0, -
0.01, -0.09, -0.13 and -0.19, respectively. On the
other hand, slope, distance to streams, drainage
density, distance to roads, road density, soil
texture and LULC have an important role in
landslide occurrence with values of 0.04, 0.10,
0.02, 0.20, 0.14, 0.13, 0.41 and 0.05
respectively.

In the case of slope angle, the higher value
was obtained for >45° ( = 3.51). For land use
factor, results showed that only forest type has
an effect on landslide susceptibility with value of
12.39, while the remaining land use types does
not have any role in landslide occurrence. In the
study area, the major portion of the landslides
occurred in the forest area due to the following
reasons:

High rainfall intensity resulting in soil
disintegration
Shallow soil depth resulted in water
seeping into the cavities or soil piping.
Unsustainable land use practices like
intensive agriculture on steep slopes,
illegal mining and quarrying, construction
of roads and buildings on unfavorable
slopes, drastic reduction in forest cover

and human interventions have resulted in
massive and frequent landslides [44].
Trees decreases the slope stability on
steep slopes, as the weight of trees may
increase the sliding force in the parallel
direction.
Wind loading and bedrock fracturing by
roots

Based on results of logistic regression for soil
texture factor, we seen that sandy soil has higher
positive    value ( = 35.25) when compared to
other texture classes.

3.4 Landslide Susceptibility Map

In the study, LSI map of the area was generated
by combining each parameter using the raster
calculator by adding the themes one by one to
assess the influence of each evidential theme in
the final LSI map with values ranging from -
5.1712 to 3.1748. If the LSI value is high, it
means a higher susceptibility to landslide, a
lower value means a lower susceptibility to
landslides [1]. This final LSI map is again
segmented in to five classes based on expert
opinion to yield five susceptibility levels. Then
this reclassified susceptibility zone map was
merged with the area classified as very low, low,
moderate, high and very high. The resulting
classes were named with the associated degree
of susceptibility (Table 5) namely very low
(61.08%), low (10.07%), moderate (11.21%),
high (10.48%) and very high (7.16%). The
validation of the landslide susceptibility map was
checked against randomly selected landslides.

Table 4. Variables in the equation

Factors Std. error Wald df Sig. Exp ( ) 95% CI for Exp ( )
Lower Upper

(Constant) 0.27 0.06 22.02 1 0 1.31 1.17 1.46
Slope -0.04 0.03 1.62 1 0.203 0.96 0.89 1.02
Aspect -0.10 0.11 0.92 1 0.336 0.90 0.73 1.11
Curvature 0.19 0.09 4.53 1 0.033 1.22 1.02 1.45
Relative relief 0.13 0.17 0.60 1 0.440 1.14 0.82 1.60
TWI 0.09 0.04 4.71 1 0.030 1.09 1.01 1.18
Distance to streams -0.02 0.13 0.03 1 0.874 0.98 0.76 1.27
Drainage density -0.20 0.04 30.59 1 0.0 0.81 0.76 0.88
Distance to roads -0.14 0.12 1.28 1 0.258 0.87 0.69 1.11
Road density -0.13 0.09 2.19 1 0.139 0.88 0.73 1.04
Distance to lineaments 0.0 0.16 0.0 1 0.987 1.00 0.73 1.36
Lineament density 0.01 0.08 0.01 1 0.928 1.01 0.86 1.17
Soil texture -0.41 0.07 30.67 1 0.0 0.66 0.57 0.77
Geomorphology 0.02 0.02 1.21 1 0.272 1.02 0.99 1.05
LULC -0.05 0.10 0.22 1 0.640 0.96 0.79 1.16
NDVI 0.62 0.95 0.42 1 0.515 1.85
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Table 5. Area covered in each susceptibility class

Susceptibility zones No. of landslides % of landslides Area(sq.km) Area (%)
Very Low 17 9.55 1536.71 61.08
Low 20 11.24 253.37 10.07
Moderate 32 17.98 282.07 11.21
High 54 30.34 263.72 10.48
Very High 55 30.90 180.15 7.16

The ROC (AUC) curve of model performance is 
shown in Fig. 4. The AUC value indicates that 
the LR method gave a high success rate (AUC = 

0.815). The resulting map of areas susceptible          
to landslides has a prediction accuracy of  
81.5%.

Fig. 4. Landslide susceptibility index map by LR model

Fig. 5. ROC-AUC of the LR model
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Fig. 6. Percentage of landslides in each susceptibility class

4. CONCLUSION

To take action to protect life and property from a
future landslide disaster, trustworthy and
accurate landslide susceptibility maps were
crucial. These maps were becoming increasingly
possible because of cutting-edge hybrid data
mining algorithms. In this study, the LR model
was utilised to forecast the mapping of landslide
susceptibility. This was accomplished by
compiling and analysing landslide inventory of
592 past landslides using fifteen landslide
causative factors, including slope, aspect,
curvature, relative relief, TWI, distance to road,
distance to stream, distance to lineaments, land
use and land cover, drainage density, road
density, lineament density, geomorphology, soil
texture, and NDVI.

The LR approach does a good job of simulating
the site's sensitivity to landslides. The high and
very high landslide susceptibility groups occur
within the 92% of the validation data. The
approach used in this study shows potential for
simulating comparable landslide-prone regions of
the state.
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