
Current Journal of Applied Science and Technology

Volume 42, Issue 41, Page 13-20, 2023; Article no.CJAST.108026
ISSN: 2457-1024

(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,
NLM ID: 101664541)

Various Mathematical Models in Agricultural
Engineering

Vaisakh Venu a++∗, Sreenath B. a++

and Ramdas E. R. b++

a Department of Mathematics, Kerala Agricultural University, India.
b Department of P&FE, Kerala Agricultural University, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2023/v42i414263

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer

review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/108026

Received: 25/08/2023
Accepted: 31/10/2023

Review Article Published: 07/11/2023

ABSTRACT

This paper investigates the important role of mathematics in the solution of complicated issues in the field
of agricultural engineering and technology. It shows examples of mathematical modelling and analytical
techniques that are used in agriculture, such as Crop Growth, Irrigation Management, Soil Moisture Modeling ,
Environmental management, Pest and Disease Management, Fertilizer Applications, Watershed Management
etc.
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1 INTRODUCTION

Agricultural engineering is very much important in
ensuring the agricultural sector’s long-term viability.
Quality and productivity are essential components of
global food security. At the core of this subject ,which
is a combination of different subjects , is the seamless
integration of mathematical and engineering principles
to address the complex difficulties of agriculture. This
paper tries to examines how various mathematical
models enable us to optimise crop production, manage
resources efficiently, design innovative machinery,
and navigate the complex web of factors influencing
agriculture in a time vitnessing abrupt change in
environmental and technological dynamics.

2 MATHEMATICAL MODELING IN
CROP GROWTH

Mathematical modelling has become a vital tool
in modern agriculture research, enhancing our
understanding of crop growth.[1,2] These models
are extremely useful for forecasting and optimising
agricultural yields, resource management, and
environmentally friendly farming practises. Different
Mathematical models give insights into how different
variables impact crop growth over time by measuring
the sophisticated relationship between environmental
parameters such as humidity,temperature, composition
of soil , and sunlight, as well as genetic identities of
the crop itself.This multidisciplinary approach has been
very important in solving global problems such as food
security, climate variations, and resource efficiency. To
account for the complicated dynamics of crop growth,
a class of mathematical models, ranging from simple
equations to very complicated mechanistic simulations,
have been created and modified over the decades.
These mathematical models have been effectively used
to a variety of crop species, including major grains
like wheat and rice, to improve crop management
tactics, optimise planting schedules, and generate
robust cultivars.

The so called logistic growth model, for example,
which is extensively used in several sectors including
agricultural research, represents the increase of a
population of organisms over time, such as crops. The
logistic growth equation is as follows [3,4]:

dN

dt
= rN

(
1− N

K

)
(2.1)

where:

N : Population size (e.g., crop yield)

r : Intrinsic growth rate

K : Carrying capacity (maximum sustainable yield)

As we grapple with the pressing concerns of
feeding a growing global population while minimising
environmental impact, continual refining and
implementation of mathematical models in crop growth
is vital for sustainable agricultural practises.[5,6]

3 MATHEMATICS IN IRRIGATION
MANAGEMENT

Agriculture depends heavily on irrigation, and maths
may assist reduce water waste. One example of an
optimisation challenge is the scheduling of irrigation.
Algorithms for dynamic programming can figure out
the best irrigation plan to increase crop output while
using the least amount of water. Since it provides the
fundamental framework for maximising water supplies
and raising agricultural production, mathematics is
crucial to irrigation management. Mathematical
models that take into account elements like soil type,
crop requirements, climatic patterns, and irrigation
infrastructure are largely reliant on for the effective
allocation of water resources, a crucial feature of
irrigation. Farmers and water resource managers may
use these mathematical models to determine when,
where, and how much water to apply, in order to
ensure that crops get the hydration they require while
minimising the amount of water utilised.

For instance, the Penman-Monteith equation may
be used to estimate crop evapotranspiration rates
precisely, which helps with irrigation planning.
Furthermore [6,7], to find the best irrigation plans
under different limitations and ensure sustainable
water usage, sophisticated mathematical procedures
like linear programming and dynamic optimisation are
used. Irrigation management may greatly help to
global food security and water conservation by utilising
mathematics, highlighting its crucial role in agricultural
practises[8,9].
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4 SOIL MOISTURE MODELING

Hydrological and environmental studies must include
soil moisture modelling because it offers crucial
insights into the changing dynamics of water content
in the soil profile. Many mathematical models have
been created to mimic changes in soil moisture
over time[10]. Understanding water availability in
agriculture, managing water resources, and protecting
the environment all depend on these models. The
Richards Equation, the Thornthwaite-Mather model,
and the Soil Conservation Service Curve Number
(SCS-CN) approach are three widely used soil moisture
models.

The Richards Equation[11] is a widely employed model
for simulating soil moisture dynamics in unsaturated
soils. It is described as:

θ

t
= ∇ · (K(θ)∇Ψ) (4.1)

where:

θ : Volumetric water content

t : Time

K(θ) : Hydraulic conductivity as a function of θ

Ψ : Soil water potential

The Thornthwaite-Mather model[12,13,14] estimates
potential evapotranspiration based on temperature and
can be used to assess soil moisture. It is given by:

PET = 16

(
T

5

)1.5

(4.2)

where PET is potential evapotranspiration, and T is
the mean monthly temperature in degrees Celsius.

The Soil Conservation Service Curve Number (SCS-
CN) method[15] is commonly used in hydrology for
estimating runoff and soil moisture conditions. The
model equation is:

Q =
(P − Ia)2

P − Ia + S
(4.3)

where Q is runoff, P is precipitation, Ia is initial
abstraction, and S is potential maximum retention.

When properly calibrated and validated, these
mathematical models are useful resources for
regulating soil moisture dynamics and enabling well-
informed decisions across a variety of fields.

5 ENVIRONMENTAL CONTROL IN
GREENHOUSES

The production of crops year-round in a controlled
environment is made possible by greenhouse farming,
which is essential to contemporary agriculture. To get
the crop yields and quality you want, greenhouses
must have effective environmental management. This
control entails regulating variables including CO2

concentration, humidity, and temperature to generate
the perfect development environment.

Regulating temperature is an important component of
environmental control. The following equation may
be used to represent the energy balance within a
greenhouse[16]:

dT

dt
=

1

C
(Pin − Pout) +

Tout − T
R

(5.1)

where T is the greenhouse air temperature, C is the
heat capacity of the air, Pin and Pout represent heat
gains and losses, respectively, and Tout is the outdoor
temperature.

Humidity control is another critical factor. The
greenhouse humidity can be managed using the
following equation:

dh

dt
=

1

V
(Min −Mout) (5.2)

where h is the greenhouse air humidity, V is the
greenhouse volume, and Min and Mout are the moisture
gains and losses.

Additionally, controlling CO2 concentration for
photosynthesis optimization is essential. The CO2

balance in the greenhouse can be described as:

dCCo2

dt
=

1

V
(Fin − Fout) (5.3)

where CCo2 is the CO2 concentration, Fin and
Fout represent CO2 flow rates into and out of the
greenhouse, respectively.

Efficient control strategies based on these equations
are essential for optimizing crop growth and resource
utilization in greenhouse agriculture.
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6 MATHEMATICAL MODELING IN
PEST AND DISEASE MANAGEMENT

In managing pests and diseases, mathematical
modelling is essential for formulating efficient control
plans and determining how they affect agricultural
systems[17]. To comprehend and forecast the dynamics
of pests and illnesses, many mathematical models have
been presented. Using compartmental models, such
as the Susceptible-Infectious-Recovered (SIR) model,
which has been modified for pests and illnesses, is a
popular strategy. For instance, the SIR model may be
altered as follows in the context of agricultural diseases:

dS

dt
= −βSI, dI

dt
= βSI − γI, dR

dt
= γI (6.1)

Here, S represents the susceptible crop population, I
is the infected crop population, and R is the recovered
crop population. Parameters β and γ govern disease
transmission and recovery rates, respectively.

Another example is the logistic growth model[17]
applied to pest populations, which can be represented
as:

dN

dt
= rN

(
1− N

K

)
(6.2)

In this equation, N represents the pest population, r is
the intrinsic growth rate, and K is the carrying capacity
of the environment. This model helps in predicting pest
population dynamics and determining optimal control
strategies.

Additionally, spatial models, such as the reaction-
diffusion model, are valuable in analyzing the spread
of pests and diseases across agricultural landscapes.
One example is the Fisher-KPP equation:

u

t
= d∆u+ ru(1− u) (6.3)

Here, u represents the pest or disease density, d is
the diffusion coefficient, and r represents the reaction
rate. This model can inform the deployment of spatially
targeted control measures.

7 OPTIMIZATION OF FERTILIZER
APPLICATION

Optimising fertiliser application in agriculture is
critical for increasing crop output while minimising

environmental consequences. This problem has
received a lot of attention in recent years, with
many research concentrating on establishing exact
techniques for fertiliser usage. Various aspects
such as soil type, crop type, climate conditions, and
economic limitations are taken into account throughout
the optimisation process. Mathematical modelling
and sophisticated optimisation algorithms are a well-
established way to attaining this optimisation [18,19].

Some examples of optimization models used for
fertilizer application are as follows:

The nutrient absorption model[20], which describes
how crops receive nutrients from the soil, is a typical
model for fertiliser optimization’s. This model is often
expressed as:

Nuptake = f(Nsoil, Nfertilizer) (7.1)

Where Nuptake is the nutrient uptake by the crop, Nsoil is
the nutrient content in the soil, and Nfertilizer represents
the amount of fertilizer applied.

Crop growth models simulate the growth and
development of crops over time, incorporating fertilizer
application as a variable. A widely used model is the
Monod equation[21], which relates crop growth rate (µ)
to nutrient availability:

µ =
µmax ·Nfertilizer

Ks +Nfertilizer
(7.2)

Here, µmax is the maximum specific growth rate, Ks is
the half-saturation constant, and Nfertilizer is the nutrient
concentration from fertilizer.

Economic factors are also involved in optimising
fertiliser application. An economic optimisation
model[22] seeks to maximise profit while accounting for
fertiliser costs and crop output. This can be written as:

Maximize Profit = Crop Yield · (Crop Price − Fertilizer Cost)
(7.3)

8 MATHEMATICAL MODELING OF
SOIL EROSION

Soil erosion is a major environmental concern with far-
reaching implications for agriculture, ecology, and land
management. Mathematical modelling is essential for
understanding and forecasting soil erosion processes,
as well as for developing efficient erosion control
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techniques. To estimate erosion rates and analyse
their influence on soil quality, many models have
been presented. The Universal Soil Loss Equation
(USLE)[[23], for example, is frequently used to predict
soil erosion based on rainfall erosivity (R), soil erodibility
(K), slope length and steepness (LS), cover and
management (C), and support practises (P). The USLE
is written as follows:

A = R ·K · LS · C · P (8.1)

The Revised Universal Soil Loss Equation
(RUSLE)[24,25,26] expands on USLE by taking into
account the impact of land management practises and
conservation measures. It may be stated as follows:

A = R ·K · LS · C · P · Cfactor · Pfactor (8.2)

Furthermore, physically-based models such as the
Soil and Water Assessment Tool (SWAT)[27] mimic
hydrological processes such as erosion by combining
soil parameters, land use, climate, and terrain. SWAT’s
erosion component may be expressed using the
following equations:

Erosion = R · K · LS · C · P ·O (8.3)

9 HYDROLOGICAL MODELING FOR
WATERSHED MANAGEMENT

Finally, mathematical models such as USLE, RUSLE,
and SWAT can be used to estimate soil erosion risk and
guide soil conservation measures. These models assist
researchers and land managers in better understanding
the complex processes involved in soil erosion and
making educated decisions to reduce its negative
environmental effects.

SWAT[28,29] is a widely-used model for simulating
the hydrology of large, complex watersheds. Its key
equations include the water balance equation :

∆S = P −Qs −Qq − E −∆Ssurf (9.1)

HSPF, on the other hand, is a complete model that
incorporates various hydrological processes, including
runoff, groundwater flow, and water quality. A
very important equation in HSPF is the equation
corresponds to kinematic wave for overland flow :

V

t
=

(SI)

x
(9.2)

VIC is a distributed hydrological model suitable for
mountainous regions. It employs equations such as the
VIC soil moisture accounting equation :

dSw

dt
= P −R− E − Sw

Smax
· (Rin − E) (9.3)

These models are useful for measuring the effects
of land use changes and climatic variability on water
resources, allowing for more informed decision-making
for long-term watershed management.

10 MATHEMATICS IN PRECISION
LIVESTOCK FARMING

With the advances in mathematics, data science, and
sensor technology, Precision livestock farming (PLF)
has evolved as a game-changing strategy in modern
agriculture. Some specific mathematical models
demonstrate the relevance of mathematics in PLF are
as follows:

Understanding and forecasting animal behaviour is
essential for effective farm management. The Hidden
Markov Model (HMM)[30,31,32], which can represent
the transitions between distinct behavioural states of
cattle, is a popular model in PLF. The following are the
model equations:

P (St+1 = sj |St = si) = πij , i, j ∈ {1, 2, . . . , N}
(10.1)

Where St represents the hidden behavioral state at
time t, and πij is the transition probability from state si
to state sj .

Optimising feed efficiency is a primary goal of PLF.
Linear programming is commonly used to solve feed
ration optimisation concerns[33,34]. The objective
function and limitations are as follows:

Minimize Z = c1x1 + c2x2 + . . .+ cnxn

Subject to a11x1 + a12x2 + . . .+ a1nxn ≥ b1
...

am1x1 + am2x2 + . . .+ amnxn ≥ bm
x1, x2, . . . , xn ≥ 0

Where xi represents the amount of a particular feed
component, ci is the cost of that component, and aij
are coefficients describing the nutritional content of the
feed components.
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Early diagnosis of animal illnesses is critical for
outbreak prevention. In PLF, machine learning methods
such as Support Vector Machines (SVM)[35,36] are
used to predict illness. The SVM model is expressed
as follows:

f(x) =

N∑
i=1

αiyiK(xi, x) + b (10.2)

Where x is the input data vector, N is the number of
support vectors, αi are the support vector coefficients,
yi is the class label, and K(xi, x) is the kernel function.

PLF relies heavily on mathematical techniques, which
allows for the modelling of optimisation of feed efficiency
, behaviour of animal , and prediction of diseases ,
eventually leading to more effective and sustainable
practises in livestock management [37-39].

11 CONCLUSION

In this study, we explore the applications of mathematics
in different fields of agricultural engineering, such
as crop growth, irrigation management, soil moisture
modelling, environmental management, pest and
disease management, fertiliser applications, watershed
management, etc. The study is not exhaustive but
gives an insight into why mathematics is essential
in agricultural engineering. It highlights the potential
of different mathematical techniques for addressing
complex challenges in agriculture, leading to innovative
solutions for a sustainable global food system.
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