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CHAPTER - I 

INTRODUCTION 

Agriculture plays an important role in the economy, and it is the backbone 

of the economic system for a developing country like India. Ending hunger and 

undernutrition are also important goals of agricultural modernization and economic 

transformation. However, agriculture may lose its quantity and quality when it is 

attacked by different insect pests. Pests and insects can damage crops, reduce yields, 

and increase the cost of production, which can have a significant economic impact 

on farmers and the overall agricultural sector. In agriculture, pest control has always 

been considered as the most challenging task for farmers.  

India ranks second in fruit and vegetable production in the world after China 

(Paul et al.,2024).  According to production data, India is one of the world’s top 

producers of pumpkin. Cucurbita maxima or pumpkins are a member of the 

Cucurbitaceae family, which is widely cultivated worldwide (Syed et al., 2019). 

Plant diseases of pumpkins greatly impact production, growth, and economic well-

being. Identifying pumpkin disease on the plant is a critical step in preventing a 

significant loss of productivity and quantity of agricultural products (Bezabh et al., 

2024). The quantity and quality of pumpkins are seriously threatened by the spread 

of pests, especially the red pumpkin beetle (Aulacophora foveicollis). Red pumpkin 

beetle pests are very challenging to manage in different Cucurbitaceae crops. 

Traditionally, farmers have relied on manual scouting and visual inspections 

to detect and identify these issues. However, this approach is time-consuming, 

subjective, and often prone to errors. So, in developing countries, where agriculture 

is often a key component of the economy, the damage can be devastating. About 30 

to 40% of the global agricultural production is being destroyed by pests (Junaid and 

Gokce., 2024). The cost of controlling pests can be high, and the use of chemical 

pesticides can have environmental and health impacts. Although there are many 

sophisticated technologies in the field of agriculture, there is still no proper 

technology to detect the problems related to pests. Achieving insect classification 
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with higher accuracy in real-time fields is a challenging issue in major agriculture 

field crops, in the presence of shadows, leaves, dirt, branches, flower buds, etc. 

Traditional monitoring methods have cost implications because the 

variables cannot be measured simultaneously at all monitoring points. These pests 

may go undetected by the labourers as they are hard to locate during nighttime. So, 

as a preventative measure, farmers spray pesticides in bulk which is not only 

harmful for the crops but also harmful for the environment. Additionally, insects 

and bugs become resistant to pesticides with continuous exposure, resulting in 

heavier pesticide usage. Extreme use of pesticides can result in severe water & soil 

contamination and can also intoxicate plants with harmful chemicals. To avoid the 

drawbacks of traditional monitoring, emerging techniques have been adopted that 

involve the application of computer vision techniques to automatically detect and 

identify insect pests (Lello et al., 2023). 

The AI based pest detection system is an effective method to provide support 

to farmers in order to reduce pests. With the advent of image processing techniques, 

computer vision, and machine learning, a new era of automated pest and disease 

identification in agriculture has emerged, revolutionizing the way farmers manage 

these challenges (Ngugi et al., 2021). Image processing techniques leverage the 

capabilities of computer vision algorithms to analyze and interpret images. By 

harnessing this technology, automated pest and disease identification systems can 

provide rapid and accurate diagnoses, enabling timely interventions and minimizing 

crop losses (Nagar and Sharma, 2020). The automatic detection of insects and pests 

from poor photos is now possible because of advances in machine learning and deep 

learning (Anwar et al., 2023). 

Image processing, in combination with advanced algorithms and machine 

learning, has opened up a world of possibilities for accurate and efficient pest and 

disease identification. By analyzing digital images of plants or crops, these 

automated systems can rapidly and accurately detect and classify pests, diseases, or 

symptoms of stress. This technology offers farmers a powerful tool to make 

informed decisions, implement targeted interventions, and ultimately safeguard 
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their crops against potential losses (Kasinathan and Uyyala, 2021). The application 

of automated pest and disease identification systems using image processing in 

agriculture thus offers several significant benefits: 1. Early Detection and Timely 

Intervention 2. Increased Accuracy and Efficiency 3. Enhanced Sustainable 

Farming Practices 4. Integration with Precision Agriculture.  

In recent years, deep learning a machine learning technique based on 

artificial neural networks (ANN) has revolutionised the field of machine vision. 

Convolutional neural networks (CNNs), a subset of artificial neural networks 

(ANNs) with convolutional layers, are one of the main forces behind machine 

vision since they can extract features straight from the raw values of pixels without 

the need for hand-engineered features. Deep learning seems to be more successful 

in diagnosing crop problems in agricultural production. Deep learning using CNN 

is widely used in agricultural fields for plant pest detection. The CNN with a 

traditional machine learning algorithm was a significant make attempt to detect 

plant diseases (Li et al., 2020). Ai et al. (2019) proposed that CNN was used 

effectively to detect crop bugs automatically. Ferentinos et al., (2018) discovered 

deep learning approaches by healthy leaf images and diseased plants. CNN models 

were created to conduct plant disorder identification and diagnosis. (Rustia et al., 

2020) implemented deep learning models for the automatic object detection of pests 

from traps. Many research studies have proved that the CNN model provides the 

highest classification accuracy of more than 90%. (Chen et al., 2020)  

 Since its introduction by Joseph Redmon (Redmon et al., 2016), YOLO 

(You Only Look Once) has grown to be one of the most well-liked real-time 

machine vision algorithms. It does this by instantly identifying specific objects in 

videos, live feeds, or images using features learned from a deep convolutional 

neural network, all while operating much faster than other networks and 

maintaining accuracy. YOLOv8, the highest performing YOLO model released 

very recently, setting new standards in real-time detection and segmentation, will 

soon become a hot topic in the research world for solving complex issues by 

providing simple and effective AI solutions.  
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Thus, by leveraging the power of computer vision and deep learning, 

automated pest and disease identification systems offer accurate and timely 

identification, enabling farmers to implement appropriate intervention measures 

promptly. With the ability to detect pests and diseases at their early stages, farmers 

can reduce crop losses, optimize resource utilization, and embrace sustainable 

farming practices. The continued advancement of image processing technology, 

thus, holds great promise for a more resilient and productive agricultural industry 

in the future. By optimizing pest and disease control measures, farmers can mitigate 

environmental impacts, enhance crop quality, and ensure the safety of agricultural 

produce. Furthermore, automated pest and disease identification systems 

seamlessly integrate with other precision agriculture technologies like variable rate 

application and site-specific management. This integration facilitates precise and 

localized interventions, optimizing resource utilization and maximizing agricultural 

productivity (Abiri et al., 2023). 

In view of all the above facts, the present study entitled “Smart pest detection for 

an agricultural field crop based on deep learning” was undertaken with the 

following specific objectives: 

● Development of a deep learning-based object detection model for pest 

detection in an agriculture field crop. 

● Performance and accuracy assessment of the model. 

● Development of a web application for real-time pest detection. 

 

 

 

 

 

 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Review Of Literature 



13 

 

CHAPTER – II 

REVIEW OF LITERATURE 

Insect pests are one of the main causes affecting agricultural crop yield and 

quality all over the world. Various methods have existed for pest detection since 

ancient times. Most of these methods are time-consuming and expensive. Pest 

detection using image processing is a novel practice in this sector. Deep learning 

models can make the tedious pest detection process effortless. Hence, in this 

chapter, a review of literature referring to an analysis of various deep learning 

techniques for pest detection, application of Roboflow in dataset creation & 

annotation, and application of YOLO for pest detection carried out by various 

researchers all over the world were briefly explained under the following subheads. 

1. Smart pest detection using different Machine Learning(ML) techniques  

2. Application of Roboflow in dataset creation and annotation 

3. Application of YOLO for pest detection 

 

2.1 SMART PEST DETECTION USING DIFFERENT ML TECHNIQUES:  

 Chithambarathanu and Jeyakumar (2023) studied crop pest detection as a 

crucial step in precision agriculture; they used Convolutional Neural Networks 

(CNNs) and transfer learning that showed promising results in detecting pests from 

images, with accuracy rates exceeding 90%. Researchers have utilized datasets such 

as PlantVillage and Crop Pest Dataset for training and testing CNN models. 

Machine learning algorithms like Support Vector Machines (SVM) and random 

forests have also been employed for feature extraction and classification. Studies 

have also emphasized the importance of data augmentation, hyperparameter tuning, 

and ensemble methods for improving model performance. While these approaches 

have demonstrated potential, challenges persist, including data quality, class 

imbalance, and scalability. 

 Kasinathan et al., (2021) studied the modern machine-learning techniques 

that have revolutionized insect classification and detection in field crops, enhancing 
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precision. They studied deep learning architectures like CNNs and Recurrent 

Neural Networks (RNNs) to classify insects from images, achieving high accuracy 

rates (>95%). Transfer learning and fine-tuning pre-trained models have also been 

successfully employed. They utilized datasets like IP102 and Crop Insect Dataset 

for training and testing models. Additionally, machine learning algorithms like 

SVM and Random Forests have been used for feature extraction and classification. 

Studies have emphasized the importance of data augmentation, hyperparameter 

tuning, and ensemble methods for improving model performance.  

 Hadipour et al., (2023) studied the intelligent detection of citrus fruit pests 

using machine vision and CNNs through transfer learning. By leveraging pre-

trained CNN models and fine-tuning them for citrus pest detection, researchers got 

high accuracy rates above 95%. Machine vision systems capture images of citrus 

fruits, and CNNs extract features and classify pests. Transfer learning adapts pre-

trained models to specific citrus pest detection tasks, reducing training time and 

improving performance. This integrated approach enables automated and efficient 

citrus pest detection, allowing for timely pest management decisions.  

 Wang et al., (2021) studied field detection of tiny pests from sticky trap 

images using deep learning in agricultural greenhouses has been proposed as a 

method for pest detection and control. Insect traps are essential for monitoring and 

controlling pest populations in greenhouses, and sticky traps are a common type of 

trap used to capture and monitor insect pests. Deep learning techniques, such as 

CNNs, can be used to automatically detect and classify insects from images of 

sticky traps, learning features and patterns that distinguish between insects and non-

insects. Once trained, CNNs can classify new images of sticky traps and detect the 

presence of insects, improving the efficiency and effectiveness of pest detection and 

control. This method can potentially reduce the use of chemical pesticides and 

minimize harm to the environment and human health. 

 Singh et al., (2021) studied detecting diseases and pest infections in coconut 

trees using deep learning. They employed CNNs and transfer learning to classify 

images of coconut trees into healthy or infected categories. Studies have 
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demonstrated high accuracy in detecting diseases such as root wilt, leaf blight, and 

pest infestations like rhinoceros beetles and red palm weevils. The study shows an 

accuracy of 96.5% in detecting root wilt disease using a CNN model. Similarly, 

detection of rhinoceros beetle infestations with an accuracy of 93.2% using transfer 

learning. These approaches can potentially revolutionize coconut tree disease 

management, enabling early detection and prompt action to prevent crop damage. 

Moreover, deep learning-based systems can be integrated with drone technology 

and IoT sensors for large-scale monitoring, making them a valuable tool for 

sustainable agriculture and food security. 

2.2 APPLICATION OF ROBOFLOW IN DATASET CREATION AND 

ANNOTATION 

 Brucal et al., (2023) studied that the development of tomato leaf disease 

detection using YOLOv8 via Roboflow 2.0 has significantly advanced precision 

agriculture. Tomato leaf diseases, such as septoria leaf spot and early blight, can 

significantly reduce crop yields and affect fruit quality. They proposed deep 

learning techniques, specifically YOLOv8, to detect tomato leaf diseases with high 

accuracy. Roboflow 2.0, a machine learning platform, has been employed to 

streamline the development process. By leveraging YOLOv8's object detection 

capabilities and Roboflow 2.0's automation features, researchers have achieved 

efficient and accurate disease detection, enabling timely interventions and 

improved crop management.  

2.3 APPLICATION OF YOLO FOR PEST DETECTION 

Melo et al., (2024) developed a lightweight model on YOLOv8 has been 

developed for detecting the Neotropical brown stink bug, Euschistus heros, in 

soybean fields. This model leverages transfer learning and fine-tuning to achieve 

high accuracy and efficiency in detecting this significant soybean pest. Compared 

to existing models, this approach demonstrates improved performance, with an 

accuracy of 97.3% and a detection speed of 35 frames per second. The model's 

lightweight architecture and optimized computational requirements make it suitable 

for deployment on edge devices, enabling real-time monitoring and control of 
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Euschistus heros in soybean fields. This innovation has significant implications for 

precision agriculture and integrated pest management, allowing farmers to quickly 

identify and respond to pest infestations, reducing crop damage and pesticide use.  

Onler (2021) studied real-time pest detection using YOLOv5, enabling 

farmers to swiftly identify and respond to pest infestations. YOLOv5, an advanced 

object detection algorithm, has been successfully adapted for pest detection in 

various crops, including soybeans, tomatoes, and potatoes. This approach leverages 

deep learning techniques to detect pests with high accuracy and speed, 

outperforming traditional methods. YOLOv5's real-time capabilities, with detection 

speeds of up to 30 frames per second, enable farmers to monitor fields continuously, 

facilitating prompt action against pest outbreaks. The study concluded that the 

effectiveness of YOLOv5 in detecting various pests, including aphids, whiteflies, 

and spider mites, with accuracy rates exceeding 90%. This technology has the 

potential to significantly reduce crop damage, pesticide use, and economic losses, 

making it a valuable tool for sustainable agriculture and food security. 

Slim et al., (2023) studied smart insect monitoring using YOLOV5 for 

detecting Mediterranean fruit fly (Ceratitis capitata) and Peach fruit fly (Bactrocera 

zonata). It was found that YOLOV5-based systems can accurately identify and 

classify these pests in real-time, achieving detection accuracies exceeding 95%. 

This innovative approach has been praised for its ability to process images at a rate 

of 30 frames per second, making it suitable for large-scale monitoring applications. 

Researchers have highlighted the potential of YOLOV5-based monitoring to 

revolutionize integrated pest management strategies, enabling farmers to respond 

promptly to fruit fly infestations and minimize crop damage. Moreover, this 

technology has been shown to reduce labor costs and enhance precision, promoting 

sustainable agriculture practices.  

Yang et al., (2024) studied a YOLOv8-based method has been proposed for 

rice pest recognition, demonstrating enhanced accuracy and efficiency. This 

approach leverages transfer learning and fine-tuning to detect various rice pests, 

including planthoppers, leafrollers, and rice borers. Studies have shown that the 
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improved YOLOv8 model outperforms existing methods, achieving an accuracy of 

97.3% and a detection speed of 35 frames per second. The model's improved 

performance is attributed to its ability to learn robust features and adapt to complex 

environments. Additionally, this method is effective in detecting pests at various 

growth stages and under different lighting conditions. The real-time detection 

capability and high accuracy of this approach make it a valuable tool for rice crop 

management, enabling farmers to take prompt action against pest infestations and 

reduce crop damage.  

 Zhu et al., (2024) studied a significant research study on developing a 

detection model for common soybean pests in complex environments using CBF-

YOLO (Class Balanced Focal Loss-YOLO). They studied the challenge of 

detecting pests in traditional methods. The CBF-YOLO model has been proposed 

to address class imbalance and improve detection accuracy. The study contributes 

to the existing literature by developing a CBF-YOLO model for detecting common 

soybean pests in complex environments, evaluating the model's performance on a 

diverse dataset, and demonstrating the effectiveness of the CBF-YOLO model in 

improving detection accuracy and addressing class imbalance issues. Overall, the 

study advances the field of agricultural computer vision and pest detection, offering 

a valuable tool for farmers and researchers to monitor and manage soybean pests 

more efficiently. 

 Tian et al., (2023) conducted an approach to small target pest detection 

using a multi-scale dense YOLO (MD-YOLO) model, addressing the challenge of 

detecting small pests in images, crucial for agricultural monitoring and 

management. Existing methods struggle with small targets, and rely on manual 

annotation, limited by dataset size and quality. The MD-YOLO model integrates 

multi-scale features and dense connections into a YOLO framework, demonstrating 

improved detection performance on a pest dataset, showcasing its potential for 

small target pest detection in agricultural applications. The result showed an 88.1 

IoU and 79.1 F1 score. This study contributes to the development of more accurate 

and efficient pest detection methods, essential for sustainable agriculture and food 
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security. By leveraging MD-YOLO, researchers and practitioners can better detect 

and manage pests, reducing crop damage and promoting environmentally friendly 

farming practices. 
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CHAPTER - III 

MATERIALS AND METHODS 

The materials used and methodology adopted for the development of smart 

pest detection in an agricultural field crop using deep-learning object detection are 

explained in this chapter. The proposed methodology comprises three main parts, 

which are respectively responsible for data collection, developing a deep learning 

model, and creating a user-friendly web application for real-time pest detection. 

The details are explained under the following subheads   

3.1 DETAILS OF STUDY AREA, CROP AND PEST 

The site is situated on the cross point of 10˚51̍ 23̎ latitude75˚59̍ 18̎ longitude 

at an altitude of 10m above mean sea level. This study area comes under the farm 

area of the Instructional Farm KCAE&FT, Tavanur. The field data collection was 

conducted in the pumpkin field of Instructional Farm, where there was a high count 

of red pumpkin beetle (Aulacophora torticollis) during the pumpkin cultivation.  

Table 3.1 Details of the pumpkin field in the KCAE&FT Instructional Farm   

Area 1350 m2 

Length 50m 

Width 27m 

Crop Pumpkin 

Pest Red Pumpkin Beetle 

  

 The Red Pumpkin Beetle was a significant agricultural pest primarily found 

in Asia and Australia. These beetles were notorious for infesting cucurbit crops, 

including pumpkins, squash, cucumbers, and melons. Red pumpkin beetles cause 

damage to crops by feeding on leaves, stems, and fruits, leading to defoliation, 

stunted growth, and reduced yield. Both adult beetles and larvae contribute to crop 

damage, with larvae often tunnelling into plant tissues and causing additional harm. 
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Identifying features of the red pumpkin beetle include its vibrant red colouration, 

elongated body shape, and distinctive black markings. Adult beetles typically 

measure around 6 to 8 millimeters in length and have prominent antennae and legs. 

They were active during the day and feed voraciously on plant foliage, stems, and 

fruits, causing damage to the host plants. By observing these identifying features, 

individuals can recognize and distinguish red pumpkin beetles from other beetles.  

3.2. AN OVERVIEW OF PROPOSED DEEP LEARNING-BASED APPROACH 

FOR PEST DETECTION 

 The overall workflow, as shown in Fig. 3.1 consists of the following 

components: 1. Data acquisition 2. Dataset preprocessing 3. Data split into training, 

validation, and testing set 4. Model development 5. Model validation and testing 6. 

Performance and accuracy assessment. 7. Creation of an HTML webpage for real 

time pest detection. The data were acquired by taking actual images from the field 

using a mobile camera and from the website ‘Shutterstock’, a free website that can 

download the best royalty-free images, including photos, vectors, and illustrations. 

The data preprocessing and data augmentation were done in Roboflow. Also, data 

training, validation, testing, feature extraction, feature fusion, and object detection 

were done using YOLOv8, a deep-learning model designed for real-time object 

detection in computer vision applications. ‘Flask’, a lightweight, modular, and 

flexible web development library for Python, was used for creating web 

applications for real-time pest detection. The details of each component in the 

overall conceptual framework were explained under the following subheadings.   
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Fig. 3.1 An illustration of the proposed smart pest detection approach. 

3.3 DATA ACQUISITION AND DATA SET USED 

Data collection lies at the heart of developing robust and accurate object 

detection systems, serving as the foundation upon which models are trained and 

evaluated. The quality and diversity of the dataset significantly influence the 

performance and generalization ability of the trained models. The collection of a 

maximum number of photos was the first step in creating a well-defined dataset. 

Since these beetles were active in the early morning, for the first 8 weeks (from 22-

02-2024 to 19-04-2024), a survey was conducted every three days, and images were 

collected using a smartphone (iPhone 7 plus) camera (Dual 12MP wide-angle and 

telephoto cameras) with a median image ratio of 4032 × 3024 pixels.  

Images were captured from different angles and resolutions to increase the 

dataset's accuracy. The images were also captured at different times of the day, such 

as morning (6.30 AM), noon (12.00 PM), and afternoon (4.30 PM), under a variety 

of lighting conditions, including direct sunlight, indirect sunlight, shade, and mixed 

lighting conditions. Most images were taken in the morning time because these 

pests were plenty in number during this time. Images of beetles resting on leaves, 

stems and flower buds were taken. Along with this, pictures of healthy and 

unhealthy leaves were also captured to avoid false detection by the model. The 
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captured images were saved daily in a Google Drive folder for easy access. The 

capturing of images was acquired by keen observation and meticulous planning. 

Thus, a total of 570 images were captured from the field. 

Apart from the field, 40 images were collected from an online website called 

‘Shutterstock’. The accuracy of training increases with the increase in the number 

of data sets. Thus a total of 610 images were added to Google Drive for easy access 

and storage and data is available in the following link 

https://drive.google.com/drive/folders/1GcwdZPiTA5BE46UcSr2A7NQRMRHH

dRF?usp=sharing.  

 

 

 

 

 

 

 

 

Plate 3.1 Sample images captured from the KCAE&FT Instructional 

Farm 

3.4 CUSTOMIZED DATASET PREPARATION  

The customized data set preparation consists of data annotation, data 

preprocessing and data augmentation. ‘Roboflow’ was used as the customized data 

set preparation conversion tool.  

 

 

https://drive.google.com/drive/folders/1GcwdZPiTA5BE46UcSr2A7NQRMRHHdRF?usp=sharing
https://drive.google.com/drive/folders/1GcwdZPiTA5BE46UcSr2A7NQRMRHHdRF?usp=sharing


24 

 

3.4.1 Roboflow 

Roboflow offers a full range of tools and services with the goal of 

streamlining and accelerating the development of computer vision models. It is a 

useful tool for programmers and companies who want to use computer vision in 

their applications and projects. Roboflow key features and capabilities include data 

annotation and preparation for labelling movies and images, both of which are 

necessary for teaching computer vision models to identify and locate objects in 

images (https://Roboflow.com/). Hence, Roboflow was used to prepare and manage 

image datasets for the machine-learning process.  Roboflow offers a variety of data 

augmentation strategies that help machine learning models become more resilient 

and general. Roboflow supports data sets in a format compatible with Computer 

vision models, which are usually trained using deep learning frameworks like 

TensorFlow, PyTorch, YOLO, etc. These frameworks offer a wide range of pre-

built components and optimizations specifically tailored for computer vision tasks, 

which significantly accelerates the model development process. Hence, Roboflow 

eases the computer vision task in the field of deep learning. It empowers developers 

to build their computer vision applications, no matter their skill set or experience. 

It supports object detection and classification models. Hence Roboflow was 

selected for this study  

3.4.1.1 Dataset preparation using Roboflow 

The first step in creating a customized dataset using Roboflow is to gather 

the raw data. For this, the images of red pumpkin beetles were captured from the 

KCAE&FT Instructional Farm. Once the data is collected, it can be uploaded to 

Roboflow's platform for further processing. A total of 610 images were uploaded 

to Roboflow. 

3.4.1.2 Data annotation using Roboflow 

After uploading the images, it must be annotated to provide labels or 

bounding boxes for objects of interest within the images or frames. The annotation 

https://roboflow.com/
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process consists of marking the object to be detected on each image by taking it into 

a rectangle. More than one object can also be marked on the image. Information 

about the objects marked on each image was stored in a text file with the same name 

as the related image. The Roboflow annotated file data includes the class of the 

marked objects, which drawn as a bounding box (x and y-axis, and width and 

height). The rectangle coordinates were normalized between 0 and 1 to be 

independent of the image size. Thus, each image was evaluated according to its 

size. Images with different sizes were used in the object detection system (Önler, 

2021).  

 Roboflow offers a range of annotation tools to facilitate this process, 

including bounding boxes, polygon, and segmentation tools. In this study, the object 

to be detected was marked with bounding boxes. For easy object detection, the data 

was classified into 3 classes, viz. pest (Yellow box), which represents the red 

pumpkin beetle infestation on the pumpkin, no pest (purple box), which represents 

a healthy pumpkin leaf and pest-affected leaf (red box) which represents a pumpkin 

leaf affected by red pumpkin beetle.  

3.4.1.3 Dataset preprocessing using Roboflow 

In image pre-processing, image enhancement techniques were applied to 

reduce noise in the images and sharpen the images for better accuracy. It improves 

the image quality for better detection and classification of insects (Kasinathan et 

al., 2021). Before fitting the model, the dataset was pre-processed to get good 

training, validation, and testing results and to avoid overfitting the model. Hence 

the following two preprocessing steps were applied using Roboflow. 

i. Converting to Grayscale. 

Grayscale conversion is applied to reduce complexity and decrease the 

amount of time to process data. It is helpful for activities like image analysis or 

model training as it makes colour information easier to understand. Using the 

grayscale conversion option in Roboflow, the uploaded datasets were converted to 

grayscale.  
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ii. Resizing. 

Resizing is done to enhance the raw image data. To resize the uploaded 

images using Roboflow, the preferred resizing option (800x800) was selected. 610 

images were resized from 4032x3024 px to 800x800 px. Thus, the images were 

automatically downsized by Roboflow, which helped to standardize the dataset's 

dimensions for further processing or model training. 

3.4.1.4 Data augmentation using Roboflow 

Since fewer insect images were available in the dataset, image augmentation 

was applied to enrich the training dataset. Data augmentation is done to enhance 

the diversity and robustness of the dataset, which is essential for accurate training 

of machine learning models. Roboflow provides a comprehensive set of data 

augmentation techniques that users can apply to their dataset with just a few clicks. 

Thus, to enrich the dataset, the images were further augmented.  

The various augmentation techniques applied in this study include: 

● Rotation: Rotate images by a specified angle to introduce variation which 

makes the model more resilient to camera roll. 

● Flipping: Flip images horizontally or vertically to simulate different 

perspectives which adds horizontal or vertical flips to make the model less 

sensitive to subject orientation 

● Noise Addition: Add random noise to images to make them more resilient 

to noise in real-world scenarios. 

● Colour Adjustment: Adjust brightness, contrast, and saturation levels to 

account for variations in lighting conditions. 

● Shearing: Shearing is a geometric transformation that skews or tilts an 

image by a specified angle, adding variability to perspective to make the 

model more resilient to the camera and subject pitch and yaw.  

● Crop: Crop an image refers to extracting a rectangular Region Of Interest 

(ROI) from the original image.  
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● Bounding Box Flip: This flips the bounding box coordinates (x, y, w, h) of 

objects in an image, simulating mirror-like reflections.  

● Mosaic: Mosaic images that combine multiple images into a single image, 

creating a mosaic pattern that is essential to divide the resultant dataset into 

training, validation, and test sets.  

● Hue: Adjusts the colour tone of an image by shifting the hue value in the 

HSV (Hue, Saturation, Value) colour space which randomly modifies the 

vibrancy of the colours in the images 

● Blur: This technique simulates real-world image degradation by applying a 

blur filter to images, reducing their sharpness and clarity which adds random 

Gaussian blur to help your model be more resilient to camera focus.  

● Exposure: Adjusts the brightness and contrast of images to simulate varying 

lighting conditions.  

● Cutout: Randomly removes rectangular regions of an image, simulating 

real-world occlusions and object cutouts.  

The combined multiple augmentation techniques were applied to create a 

diverse set of training examples to improve the model's generalization capabilities. 

Roboflow gave us the ability to define the ideal split ratio. One-tenth went towards 

testing, one-fifth went towards validation, and seven-tenth went towards the 

training set. Finally, Roboflow facilitates data export in various formats that are 

compatible with popular YOLO frameworks. After applying augmentation on the 

training set, the datasets created 852 more augmented trained images besides the 

original. Thus, the combined dataset consists of a total of 1462 images for training 

the model. 

3.4.1.5 Splitting dataset using Roboflow 

The entire data was divided into 3 sets, having a training set (87%) 

containing 1278 images, a Validation set (8%) containing 122 images, and a testing 

set (5%) containing 62 images by Roboflow. The ratio between the number of 

images in each class were made the same in order to detect pests more accurately 
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and reduce the impact of class imbalance (a dataset within which one or some 

classes have much greater number of datasets than others) on the 

model's performance. 

 

Fig. 3.2 Splitting of Dataset into train set, valid set, and test set in Roboflow 

 i. Training Set  

This is the actual dataset from which a model trains. i.e. the model sees and 

learns from this data to predict the outcome or to make the right decisions. Most of 

the training data was collected from several resources and then pre-processed and 

organized to provide proper performance of the model. The training data type 

hugely determines the model's ability to generalize.  i.e., the better the quality and 

diversity of training data, the better the performance of the model. As per Roboflow 

this training data set should be 87% of the total data available for the project. Hence 

this study selected 1278 images for training the model. 

ii. Validation Set 

The validation set is used to fine-tune the hyperparameters of the model and 

is considered a part of the training of the model. The model only sees this data for 

evaluation but does not learn from this data, providing an objective unbiased 

evaluation of the model. The validation dataset can also be utilized for regression 

by interrupting the training of the model when the loss of the validation dataset 

becomes greater than the loss of the training dataset. i.e. reducing bias and variance. 
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This data should be approximately 10-15 % of the total data available for the 

project, but this can change depending on the number of hyperparameters. i.e., if 

the model has quite many hyperparameters, then a large validation set gives better 

results. However, this study selected 8% (122 images) for validation. Whenever the 

accuracy of the model on validation data is greater than that on training data, then 

the model is said to be generalized well.  

iii. Testing Set 

This dataset is independent of the training and validation sets, but has a 

similar probability distribution of classes. It is used as a benchmark to evaluate the 

model and is applied only after completing the model training. A testing set is 

usually a properly organized dataset with all kinds of data for scenarios, the model 

would probably face when used in the real world. If the model's accuracy on training 

data is greater than that on testing data then the model is said to be overfitting. If 

the model has not learned the patterns in the training data well and is unable to 

generalize well on the new data then the model is said to be underfitting. If both the 

training data error and the testing data error are minimal then the model is said to 

be good fitting. The data required should be approximately 5-10% of the total data 

available for the project. However, the Roboflow study selected 5% of images (62 

images), which were the data taken from the actual field to test the model. The 

details of the data and its split up were shown in Table 3.2. 

Table 3.2 Details of data and its split up for training, validation and testing 

Data source No. of images 

Data set Split 

Training 

(87%) 

Validation 

(8%) 

Testing 

(5%) 

From crop field 570 1278 122 62 

From Shutterstock  40 

By data augmentation 852 
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3.4.1.6 Dataset health check 

 Roboflow offers a comprehensive data health checkup to ensure data 

integrity, consistency, quality, label quality, data balance, distribution, size, and 

storage. Running a data health checkup can identify and address potential issues, 

ensuring the dataset is reliable, efficient, and optimized for machine learning model 

training. This study adopted the following data health checkup methods.  

● Annotation heatmap 

● Histogram equalization  

i. Annotation heatmap 

In Roboflow, the annotation heat map is a powerful visualization tool that 

reveals the distribution and density of annotations in your dataset, helps to optimize 

annotation strategy and improves model performance. By analysing the annotation 

heat map, one can refine the annotation process, ensure more accurate and balanced 

labels, and enhance the overall quality of machine learning models, leading to better 

decision-making and outcomes. In the heatmap, the blue region (cool colour) has a 

low annotation density, and the green region (warm colour has a high annotation 

density allowing us to quickly identify hotspots, class imbalance issues, and 

potential biases (Jiang et al., 2024). 

ii. Histogram equalization 

 Histogram equalization is a visualization tool that provides insights into the 

distribution of object instances in a dataset. This histogram displays the count of 

objects on the y-axis and the object classes (viz. pest, affected, no pest) on the x-

axis, represented as a bar chart, enabling understanding of the object class 

distribution, identifying class imbalance issues, and visualizing the frequency of 

each object class. By analysing the histogram, the dataset can be refined to address 

class imbalance, adjust model hyperparameters for improved performance, identify 

rare or underrepresented classes, and enhance object detection and classification 

accuracy (Jiang et al., 2024). 
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3.5 EXPERIMENTAL ENVIRONMENT CONFIGURED FOR DEEP 

LEARNING OBJECT DETECTION MODEL DEVELOPMENT   

3.5.1 Hardware used 

Table 3.3 displays the configuration of the experimental environment used 

in the study. The hardware primarily comprises a high-performance computer. The 

mainframe computer is equipped with an Intel(R) Core (TM) i5-12450H processor 

and a graphic card GeForce RTX 3050 6GB. GPU is a specialized processor, 

commonly used to accelerate graphics rendering and computational tasks in 

machine learning. CUDA, a parallel computing platform by NVIDIA that enables 

developers to use GPUs for general-purpose processing, significantly speeding up 

tasks that involve heavy computation.  

   Table 3.3 Experimental environment configuration needed for model 

building. 

Item Category Description 

Hardware   Central Processing Unit Intel(R) Core (TM) i5-12450H    

Random Access Memory 8.00 GB 

Solid State Drive SAMSUNG MZVL2512HCJQ-

00BH1 

Graphics card (GPU) NVIDIA GeForce RTX 3050 6GB 

CUDA 12.5 

Software Operating System Windows 11 

Programming Language Python 3.10.11 

Coding Software platforms Colab  

PyCharm 2024.1  

Pytorch 

 Software Open CV  

NumPy 

Ultralytics 

Flask 

 Object detection model YOLO 
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3.5.2 Details of software used   

i. Python 

It is a high-level, interpreted programming language that is easy to learn and 

understand. It is a versatile language that can be used for various purposes such as 

web development, data analysis, artificial intelligence, automation, and scientific 

computing. Python is known for its simplicity, readability, and large community 

support, making it an ideal language for beginners and experienced programmers a 

like. 

Python has a vast collection of libraries and frameworks that make it easy 

to perform various tasks, such as data analysis, web development, and machine 

learning. Some popular libraries include NumPy, pandas, and scikit-learn for data 

analysis, and TensorFlow and Keras for machine learning. Python is also a cross-

platform language, meaning that programs written in Python can run on multiple 

operating systems, including Windows, macOS, and Linux. Overall, Python is a 

powerful and versatile language that is well-suited for a wide range of applications. 

Hence, we selected python as the programming language, also YOLO is supported 

by python for object detection using a Convolutional Neural Network. 

Libraries in Python are a collection of code that makes everyday tasks more 

efficient. In this study, we used library functions, such as OpenCV, NumPy and 

Flask. 

ii. Google Colab 

 Google Colab is a free, web-based platform for data science and machine 

learning that offers a Jupyter notebook environment with unlimited storage and 

computing resources including GPUs (Graphics Processing Units) and TPUs 

(Tensor Processing Units). The Google Colab platform in Python programming was 

used to run the custom-trained model. With Colab, users can write and execute 

Python code for data cleaning, visualization, and modeling without setting up a 

local environment. It features free access to GPU acceleration for fast training of 

machine learning models, integration with Google Drive for seamless access to data 
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and files, and support for popular libraries like TensorFlow, PyTorch, and scikit-

learn. Additionally, Colab allows for real-time collaboration and sharing of 

notebooks, automatic saving and versioning of work. Thus it is a collaborative 

platform that offers a multitude of resources for machine learning endeavors to 

learn and improve its object detection capabilities. 

 iii. PyCharm 

 PyCharm is a popular Integrated Development Environment (IDE) for 

Python programming, offering a comprehensive set of tools for coding, debugging, 

and testing Python applications. It features intelligent code completion, advanced 

debugging and testing tools, support for web development frameworks like Django 

and Flask, support for scientific computing and data science libraries like NumPy 

and Pandas. PyCharm comes in two editions: Community (free) and Professional 

(paid), with the latter adding additional features like web development, database 

support, and scientific computing tools. Using PyCharm, developers can improve 

coding efficiency and productivity, enhance code quality and maintainability, 

streamline debugging and testing processes, and support a wide range of Python 

libraries and frameworks, all while enjoying cross-platform compatibility on 

Windows, macOS, and Linux. 

iv. PyTorch  
 PyTorch is an open-source deep learning framework developed by 

Facebook's AI Research Lab (FAIR). It provides a flexible and efficient platform 

for developing and deploying machine learning and deep learning models. PyTorch 

is installed for supporting GPU and repository uses in YOLOv8. 

v.Open CV  

             OpenCV (Open-Source Computer Vision Library) is an open-source 

computer vision and machine learning software library. OpenCV is used to 

process frames from the camera and annotate the detected objects with bounding 

boxes 
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  It is the fundamental building block of the library, providing low-level 

operations for manipulating and processing images and matrices. It provides a wide 

range of tools and algorithms for tasks such as object detection, facial recognition, 

and image transformation in image processing. It supports multiple languages, 

including Python, Java, and C++.  

vi.NumPy 

NumPy is the essential package for computation in Python. It's a Python 

library that provides a multidimensional array object, multihued deduced objects 

(masked arrays and matrices), and a variety of routines for fast operations on arrays, 

including mathematical, logical, shape manipulation, sorting, opting, I/ O, discrete 

Fourier transforms, basic linear algebra, basic statistical operations, random 

simulation and much more. NumPy is an input format for YOLOv8 and can load 

and save images as JPEG or TIFF. The images were stored as a multi-dimensional 

array. Image resizing was done by changing the dimensions of the NumPy array.   

The predictions are evaluated with the help of Numpy, NumPy library plays 

a crucial role in the object detection process. It enables efficient data preprocessing, 

and feature extraction from images, allowing for the generation of object proposals 

and computation of bounding box overlap and Intersection Over Union (IoU). 

NumPy's array operations facilitate the calculation of loss functions during model 

training. Additionally, it stores model weights and biases, enabling efficient matrix 

multiplications and neural network computations. By leveraging NumPy's 

capabilities, object detection algorithms can process and analyze large datasets, 

leading to accurate and efficient object detection in images and videos. 

 

vii.Ultralytics 

 Ultralytics is a Python library for machine learning and computer vision 

tasks, particularly designed for YOLO (You Only Look Once) object detection 

models. It provides a simple and efficient interface for tasks like image processing, 
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object detection, and model training, making it a popular choice for applications 

like object detection, image processing, model training and evaluation. 

viii.Flask 

Flask is a lightweight, modular, and flexible web development library for 

Python that enables the building of scalable and efficient web applications. It 

provides a simple and easy-to-use API for building web services, APIs, and web 

applications, focusing on flexibility and extensibility. Flask is ideal for building 

small to medium-sized web applications, prototyping, and proof-of-concepts. 

3.5.3 YOLO object detection model 

 The foundational architecture for training the computer vision models in this 

research is the You Only Look Once (YOLO) architecture. Renowned for its high 

degree of accuracy while maintaining a compact model size, YOLO has become 

prominent in the field of computer vision. YOLO is a new wave of AI in the field 

of object detection. It is one of the most popular model architectures and object 

detection algorithms. YOLO is a real-time object detection algorithm developed by 

Joseph Redmon and Ali Farhadi in 2015. 

 Object detection using YOLO is performed by deploying convolutional 

neural networks. In order to detect and classify objects, YOLO uses a neural 

network with single forward propagation. The algorithm has exceptional speed and 

accuracy for detecting and classifying multiple objects in an image, video, or in 

real-time. The YOLO algorithm has many variants. In this study, YOLO is applied 

to detect multiple pests. It is a single-stage object detector that employs a single 

Convolutional Neural Network (CNN) to predict the bounding boxes and class 

probabilities of objects in input images. YOLO divides the input image into a grid 

of cells, and, for each cell, predicts the probability of an object's presence and the 

object's bounding box coordinates. The algorithm uses end-to-end neural networks 

that make predictions of bounding boxes and class probabilities all at once and 

provides real-time object detection. It is a very popular algorithm because of its 
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speed and accuracy. YOLO has been developed in several versions such as 

YOLOv1, YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7 and 

YOLOv8. Ultralytics, the entity responsible for the inception of YOLO ushered in 

a new era with the introduction of YOLOv8 in January 2023. Because of the 

following Key features such as accuracy, speed, backbone, and supervised learning 

(class label), YOLOv8 was selected in this study for model development (insert 

table)    

3.5.3.1 YOLO-v8 

There are many algorithms and models for pest detection. This study 

selected the YOLOv8 algorithm developed by Ultralytics recently on 10 January 

2023. YOLO is currently the most popular real-time object detector, which can be 

widely accepted for the following reasons: a) Lightweight network architecture. b) 

Effective feature fusion methods. c) Multiple backbone d) Improved accuracy and 

enhanced speed. d) Multiscale prediction, e) Customizable architecture, f) Adaptive 

training g) Supervised learning It represents the cutting-edge advancements in the 

YOLO series, showcasing outstanding detection accuracy and speed. A noteworthy 

aspect of YOLOv8 is the inclusion of an apparatus for self-attention in the 

network’s head. This feature enables the model to concentrate on various areas of 

the imagery and change the value of elements according to relevance. Another 

noteworthy aspect of YOLOv8 is its capacity to recognize objects on many scales, 

which is accomplished via a characteristic hierarchy network. The model can 

reliably recognize things of various sizes inside an image because of the network’s 

numerous layers that detect objects at various scales. 

i. Working principle and key features of YOLOv8 

 YOLO architecture operates on the principle of performing object detection 

in a single forward pass of the network, making them exceptionally fast and suitable 

for real-time applications. 
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ii. Key features of using YOLOv8 

The multiple backbones in YOLOv8 support various backbones, which is 

part of the architecture that utilizes EfficientNet, ResNet, and CSPDarknet, giving 

users the flexibility to choose the best model for their specific use case. YOLOv8 

uses adaptive training to optimize the learning rate and balance the loss function 

during training, leading to better model performance. The customizable architecture 

in YOLOv8 allows users to easily modify the model's structure and parameters to 

suit their needs. 

  The YOLOv8 comes in five different variants depending on the network 

width and depth, viz. nano(n), small(s), medium(m), large(l), and extra-large(x). 
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  3.5.3.2 Architecture of YOLOv8 

 

 

Fig. 3.3 The architecture of YOLO-v8 model 

 



39 

 

3.5.3.3 YOLOV8 model architecture description  

 YOLOV8 utilizes a convolutional neural network that can be divided into 

three main components: the backbone network (feature extraction layer), neck 

network (fusion layer), and head (prediction layer).  

i. Backbone 

The backbone, also known as the feature extractor, is responsible for 

extracting meaningful features from the input. YOLOv8 incorporates an enhanced 

CSPDarknet53 as its backbone network for efficient feature extraction. The 

architecture known as Darknet-53, which comprises fifty-three convolutional 

layers, is partitioned into several smaller convolutional modules based on varying 

phases of information transmission, directing the model gradient flow during 

propagation, thus mitigating the vanishing gradient issue.                   

  In YOLOv8 architecture, CBS stands for operations such as Convolutional 

layer, Batch Normalization, and Swish activation. The convolutional layer performs 

convolution operation and batch normalization normalizes the inputs of each mini-

batch, stabilizing and accelerating the training process. The swish activation option 

in YOLO is a smooth function to introduce non-linearity. Activation functions like 

SiLU (Sigmoid Linear Unit) are applied for activation functions for neural 

networks. C2F2 stands for convolutional layer, followed by two fused residual 

blocks. The C2F2 module is to enhance feature extraction by leveraging the 

strengths of convolutional layers and residual connections. SPPF (Spatial Pyramid 

Pooling – Fast) module enhance the feature extraction process by aggregating 

features at multiple spatial scales efficiently. SPPF is composed of multiple 

Maxpool2d and CBS. MaxPool2d operation is used to reduce the spatial dimensions 

of feature maps while retaining the most significant features. The CBS is replaced 

by C2F2 to enhance feature fusion across different stages of the network.  
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iii. Neck 

 The neck is a bridge between the backbone and the head, performing feature 

fusion. It is responsible for building feature pyramids. Activities include performing 

concatenation or fusion of features of different scales. The "neck" in the architecture 

of YOLOv8 typically refers to the part of the network that comes after the backbone 

(which extracts features from the input image) and before the head (which makes 

predictions).  

In the architecture of the neck, the "upsample" operation involves increasing 

the spatial resolution of feature maps. Concat (concatenation) operation is used to 

involve concatenating feature maps from different scales or levels of abstraction. It 

helps in integrating multi-scale information and enhancing the model's ability to 

detect objects of various sizes and complexities. Transitioning from "Concat to 

C2F2" enhances the model's capability to extract and integrate features across 

different scales or stages, potentially leading to improved object detection 

performance. From "C2F2 to upsample" suggests a shift using advanced feature 

fusion techniques to primarily focus on adjusting the spatial resolution of feature 

maps through upsampling operations. Transitioning from "Concat to C2F2" 

enhances the model's capability to extract and integrate features across different 

scales or stages, potentially leading to improved object detection performance. 

iii. Head 

 The head is the final part of the network and is responsible for generating 

the network’s outputs, such as bounding boxes and confidence scores for object 

detection. i.e. The head receives the output from the neck and utilizes it to generate 

predictions for both classes and bounding boxes. Activities include generating 

bounding boxes associated with possible objects in the image, assigning confidence 

scores to each bounding box to indicate how likely an object is present, sorts the 

objects in the bounding boxes according to their categories. For this, YOLOv8 

adopts a detection module. Head generates bounding boxes associated with possible 

objects in the image and assigns confidence scores to each bounding box to indicate 
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how likely an object is present. It also sorts the objects in the bounding boxes 

according to their categories. Finally, detection is done in the head part. 

3.5.3.4 Different Layers in YOLOv8 

YOLOv8l is based on a deep convolutional neural network. The exact 

architecture and number of layers can vary slightly depending on the specific 

implementation and any modifications made by individual researchers or 

developers. But generally, it has the following layers.  

1. Input Layer: Accepts the input image 

2. Convolutional Layers: These layers consist of convolutional filters that extract 

features from the input image. They form the backbone of the network. 

3. Normalization Layers: Techniques like batch normalization may be employed to 

improve the training stability and convergence speed of the network. 

4. Activation Layers: Activation functions SiLU (Sigmoid Linear Unit) are applied 

after convolutional and fully connected layers to introduce non-linearity into the 

network. 

5. Pooling Layers: These layers downsample the spatial dimensions of the feature 

maps, reducing computational complexity and increasing the receptive field. 

6. Fully Connected (FC) Layers: In FC layers, each input is connected to all 

neurons. In some versions of YOLO, fully connected layers are used for tasks such 

as bounding box regression and class prediction. 

7. Detection Layers: These layers are responsible for detecting objects in the input 

image. They typically consist of convolutional layers and a final detection layer that 

outputs bounding boxes, object, and class predictions. 
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8. Output Layer: Produces the final output of the network, typically bounding boxes 

along with associated class probabilities. 

3.5.3.5 Selection of best variant of YOLOv8 for model training  

 Relevant comparison experiments were performed on different variants of 

YOLOv8 using the same validation dataset to verify the improved model’s 

effectiveness, and the results were compared. Since the dataset is not very large, a 

study was conducted to train the model in the different architectures, such as 

YOLOv8n, YOLOv8s, and YOLOv8l. The performance was compared, and based 

on the performance, the best variant was selected for this study. 

3.5.4 Dataset export 

Once the data is annotated and augmented, it can be exported in various 

formats suitable for training the machine learning models. Roboflow supports 

exporting datasets in formats compatible with popular deep learning frameworks, 

including TensorFlow, PyTorch, and Yolo. In this study, YOLO was selected.  

3.5.4.1 Source code for customized dataset export 

The network architecture of the model was trained using source code on the 

Google Colab platform, a platform provided by Google LLC in Menlo Park, CA, 

U.S.A. This platform is useful for accessing GPUs, which are necessary for training 

deep learning models. The required computing environment was set up by adjusting 

the runtime type to GPU and acquiring the NVIDIA GeForce RTX 3050 6GB from 

NVIDIA in Santa Clara, CA, U.S.A. The YOLOv8n, YOLOv8s, and YOLOv8l 

repository are cloned from the official GitHub repository. The customized dataset 

was exported using the following source code. 
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Fig. 3.4 Source code for customized dataset 

3.5.4.2 Raw URL of customised dataset 

 The customized data set was converted into a URL link. Using the following 

URL, users can access and download the customized dataset used in this study. 

https://app.Roboflow.com/ds/7g8BbZsBry?key=tKihxgRuEp. The dataset was 

exported in the YOLOv8 PyTorch/TXT, formats from the Roboflow project and 

structured with the necessary directory hierarchy and annotation files compatible 

with the YOLO architecture. 

3.6 EXPERIMENTAL SETUP FOR YOLOV8 MODEL BUILDING 

Dataset preparation, network training, model validation & testing, and 

model performance & accuracy assessment were the fundamental processes 

adopted to develop the model for the object identification task. Dataset preparation 

has already been explained. The object detection deep learning model YOLOV8 

was deployed for training. The dataset was separated into three parts to conduct the 

experiment: 87% for training, 8% for validation, and 5% for testing. The model is 

trained from training images, followed by an evaluation of the validation images, 

and when the experiment is ready to accomplish the predicted results, the final 

evaluation is done on the testing set. 

3.6.1 YOLOv8 Training, Validation and Testing 

i. Model training strategy 

The Yolo object detection model was configured and trained on the images 

of red pumpkin beetles. This study selected 1278 images for training using 

YOLOv8. Before training begins, the model is configured concerning the dataset 

https://app.roboflow.com/ds/7g8BbZsBry?key=tKihxgRuEp
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and configuration according to GPU, CUDA, and OpenCV. The data set prepared 

in Roboflow was used for training of YOLOv8 model. The Google Colab platform 

in Python programming was used to run the custom-trained model. The YOLOv8 

model was imported to Google Colab. The training was carried out by installing 

Ultralytics, which is widely recognized for its speed and accuracy in real-time 

computer vision tasks. Roboflow with the dataset was also attached to Google 

Colab. Usually training a model typically involves gathering a labeled dataset, 

configuring the model architecture, and setting hyperparameters. This study 

selected the hyperparameters epoch, learning rate, batch size and image size for 

training the model. The optimizer used was Adam W.  

The training process was meticulously executed using a specialized source 

code specifically designed for the task shown in Fig 3.5. This source code was 

integrated into the Google Colab environment. During the training phase, the model 

underwent numerous iterations, commonly referred to as epochs. Epoch indicates 

the number of times the entire training dataset is passed through the CNN network.  

Epoch is a hyperparameter that determines the machine learning model's training 

process. The learning rate, image size, and batch size were also adjusted. Batch size 

defines the number of samples taken to work through a particular machine-learning 

model before updating its internal model parameters. Thus, network architecture, 

hyperparameters, lost function parameters, etc, were adjusted to train the model. 

The loss function is the difference between the actual value and the predicted value, 

which varies between 0 and 1. As the value of the loss function decreases better 

accurate the model for object detection.  The model was trained using the training 

dataset until it achieved satisfactory performance indicators in detecting objects 

within images. Thus, weights are obtained as a result of training the model, which 

is represented in the file name ‘last. pt’. As the training progressed, the model 

iteratively adjusted its internal parameters to optimize its ability to detect and 

localize objects of interest within the images accurately. This learning process 

involved minimizing a defined bounding loss function that quantified the disparity 

between the predicted bounding boxes and the ground truth annotations.  
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Fig. 3.5 The code used for training YOLOv8 in Google Collab  

ii. Model validation and testing strategy 

  Validation is a critical process used to evaluate the performance and 

accuracy of a model. The detection model was validated and tested on the images 

of red pumpkin beetles. The validation and testing process was executed using the 

source code specifically designed for the task. This study selected 122 images for 

validation and 62 images for testing. Validation and testing of a YOLOv8 model 

estimate its accuracy and reliability. Validation adjusts hyperparameters to optimize 

performance and select the best-performing model, while testing involves 

evaluating the model's performance on a separate, unseen dataset to ensure that it 

generalizes well to new data and calculates metrics like precision, recall, MAP, 

false positives, and false negatives on a test dataset. Key metrics include mAP and 

AP, which evaluate object detection, class-specific performance, and recall. The 

file ‘last.pt’ is uploaded for validation and testing of the model. Add Dataset for 

validation and testing. Validation is done with the validation dataset and testing is 

done with the photos and videos taken from the field. Run the model evaluate the 
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prediction and analyse the performance until satisfactory results are obtained. The 

final results are then documented. 

3.7 PERFORMANCE EVALUATION AND ACCURACY ASSESSMENT  

Performance evaluation and accuracy assessment of an object detection 

model are crucial steps in ensuring the model's reliability and effectiveness in 

identifying and localizing objects within images. These assessments typically 

involve a combination of quantitative metrics and qualitative analysis. Key metrics 

include the Confusion matrix, precision, recall, and the F1-score, which together 

provide insights into the model's accuracy in detecting true positives while 

minimizing false positives and negatives. The mean Average Precision (mAP) is 

often used as a comprehensive measure, evaluating the precision-recall curve across 

different threshold levels. Continuous evaluation using these methods helps fine-

tune the model, enhancing its generalization capability and robustness in real-world 

applications. 

3.7.1 Confusion matrix 

Confusion matrix, a popular tool for evaluating the performance of deep 

learning-based models, is utilized in this study. It serves as a visual representation 

and quantitative assessment of the Pest detection in the YOLOv8 model's predictive 

performance, allowing the evaluation, analysis, and improve the model's accuracy 

and effectiveness. Additionally, the confusion matrix enables the calculation of 

class-specific performance metrics, providing a more detailed understanding of the 

model's strengths and weaknesses across different pest detection classes. The 

confusion matrix is organized as a grid, with the Y-axis representing the true 

classifications and the X-axis representing the predicted classifications. Table 3.4 

represents a basic confusion matrix. There are 3 primary classes in this case study. 

For three primary classes, the matrix will be 4x4 as shown in table 3.5. The main 

diagonal of the confusion matrix corresponds to the correctly classified instances, 

where the predicted class matches the true class. Off-diagonal cells represent the 

misclassified instances, where the predicted class differs from the true class. 



47 

 

 

 

The breakdown of a confusion matrix is as follows: 

● True Positive (TP): The cases where the model correctly predicts the 

positive class.  

● True Negative (TN): The cases where the model correctly predicts 

the negative class. 

● False Positive (FP): The cases where the model incorrectly predicts 

the positive class (Type I error). 

● False Negative (FN): The cases where the model incorrectly predicts 

the negative class (Type II error). 

Table 3.4 A basic confusion matrix 

 

 

 

 

By dissecting these elements, various performance metrics can be derived, 

such as accuracy, precision, recall, and F1 score, each providing unique insights 

into the model's effectiveness. Additionally, confusion matrices are invaluable for 

diagnosing specific issues within a model, such as imbalances between classes or 

misclassification patterns. In essence, confusion matrices serve as a cornerstone for 

understanding and refining classification models, offering a structured framework 

for assessing their efficacy and identifying areas for improvement.  

 

 

 Predicted Positive         Predicted Negative         

True Positive TP FN 

True Negative FP TN 
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Table 3.5 A 4x4 matrix formed for the three primary classes considered in this 

study. 

 Predicted Class 

“Pest”  

Predicted Class 

“No Pest”  

Predicted Class 

“Affected” 

True Class 

“Pest” 

True Positive 

(Pest) 

False Negative  

(No Pest) 

False Negative 

(Affected) 

True Class “No 

Pest” 

False Positive 

(Pest) 

True Positive 

(No Pest) 

False Negative 

(Affected) 

True Class 

“Affected” 

False Positive 

(Pest) 

False Positive 

(No Pest) 

True Positive  

(Affected) 

 

The confusion matrix offers four different and individual matrics, as already 

seen. Based on these four metrics, other metrics can be calculated that offer more 

information about how the model's behavior and performance. They are 

1. Accuracy 

2. Precision 

3. Recall 

3.7.1.1 Accuracy 

Accuracy is the ratio of correctly predicted observations (both positive and 

negative) to the total observations. It provides an overall measure of the model's 

performance 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

3.7.1.2 Precision 

Precision is the ratio of correctly predicted positive observations to the total 

predicted positives. It tells us how many of the predicted positives were actually 

correct. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
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3.7.1.3 Recall 

Recall is a metric that measures how often a machine learning model 

correctly identifies positive instances (true positives) from all the actual positive 

samples in the dataset. 

Recall = 
𝑇𝑃

 𝑇𝑃 + 𝐹𝑁
                                           

3.7.2 Curves derived from confusion matrix 

3.7.2.1 Precision-confidence curve: 

The precision-confidence curve is a visual representation of the relationship 

between precision and confidence threshold. The precision-confidence curve plots 

the precision value at different confidence thresholds. Starting from a high 

confidence threshold, the precision will be relatively high because only confident 

predictions are considered valid. 

3.7.2.2 Recall-confidence curve 

The recall-confidence curve illustrates how the recall metric changes as the 

confidence threshold varies. As the confidence threshold decreases, more 

predictions are considered valid, including both true positives and potential false 

positives 

3.7.2.3 Precision-recall curve 

The precision-recall curve is another visual representation that provides 

insights into the performance and efficiency. The curve showcases the relationship 

between precision and recall, two important metrics used to evaluate the model's 

predictive accuracy. 

It is desired that the algorithm should have both high precision and high 

recall. However, most deep learning algorithms often involve a trade-off between 

the two. A good PR curve has a greater AUC (area under the curve). It is important 

to note that the classifier has a higher AUC. Here, we can consider an algorithm 

that classifies whether or not a picture contains a red pumpkin beetle. Assume there 

https://www.geeksforgeeks.org/auc-roc-curve/
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are 12 images, with the following ground truth (actual) and classifier output class 

labels. 

By setting different thresholds, we get multiple such precision, recall pairs. 

By plotting multiple such P-R pairs with either value ranging from 0 to 1, we get a 

PR curve. 

3.7.3 OTHER PERFORMANCE INDICATORS 

3.7.3.1 Average precision 

To compute AP, precision and recall values are first obtained by varying a 

threshold that determines whether a predicted instance is correct. Then, precision is 

calculated at each recall level. These precision-recall pairs are plotted on a graph, 

and the area under this curve represents AP. 

The AP metric is particularly valuable in scenarios where the class 

distribution is imbalanced or when ranking predictions by their confidence scores. 

In binary classification tasks, AP quantifies the model's ability to effectively 

distinguish between positive and negative instances. 

AP=∫P(r)dr 

3.7.3.2 Mean Average Precision(mAP) 

The mean Average Precision (mAP) is often used when dealing with multi-

class classification or object detection tasks. mAP calculates the AP for each class 

and then computes their average. This provides a more comprehensive evaluation 

of the model's performance across all classes. 

mAP=
1

𝑛
∑ 𝐴𝑃𝑖𝑛

𝑖   where n is the No.of classes 

3.7.3.3 F1 Confidence Curve 

The F1-score curve demonstrates how the F1-score changes as the threshold 

varies. The curve illustrates the relationship between the F1-score and a varying 

threshold used for predictions. The X-axis of the F1-score curve represents the 
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threshold, which is the minimum confidence score required for a prediction to be 

considered valid. The Y-axis represents the F1-score, which is a metric that 

combines both precision and recall into a single value. The F1-score provides a 

balanced evaluation of the model's performance, considering both the ability to 

correctly identify positive instances (precision) and capture all actual positive 

instances (recall). As the threshold decreases, more predictions are considered 

valid, potentially increasing the recall of the model. 

F1 Score = 2 ×
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

3.7.3.4 Loss Function Curves 

 A loss function curve is a crucial tool for visualizing the training process of 

a machine learning model. This graph typically plots the loss values on the y-axis 

against epochs or iterations on the x-axis. The curve usually includes two lines: one 

for the training loss and another for the validation loss. As the model learns, the 

training loss should decrease, indicating improved performance on the training data. 

Concurrently, the validation loss should decrease if the model generalizes well to 

unseen data. 

i. Underfitting of the model 

 If both training loss and validation loss are high and similar in magnitude, 

the model is not trained for enough time. This represents the Underfitting of the 

model. 

ii. Overfitting of the model 

 If validation loss increases and training loss decreases, the model becomes 

too tailored to training data and loses its ability to generalize. This represents the 

Overfitting of the model. 

iii. Goodfit model 

 If both training loss and validation loss are decreasing model is Goodfit. It 

indicates that the model learns effectively from the training data and would 

perform well on new, unseen data. 
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Analyzing the loss function curve helps diagnose issues like overfitting and 

underfitting and guides decisions on adjustments to hyperparameters or training 

strategies. 

Types of Losses 

i. Box Loss. 

 Box loss is a critical component in training object detection models, which 

need to identify and localize objects within an image accurately. It measures the 

discrepancy between the predicted bounding boxes and the ground truth boxes. By 

minimizing box loss during training, the model becomes more adept at detecting 

and localizing objects with high precision, which is essential for tasks such as 

autonomous driving, image recognition, and various computer vision applications. 

Analysing and optimizing box loss helps improve object detection systems' overall 

performance and reliability. 

ii. Class Loss 

Class loss is a fundamental component in the training of machine learning 

models for classification tasks, particularly in object detection. It quantifies the 

error between the predicted class probabilities and the true class labels of the objects 

being detected. Class loss helps the model to learn and distinguish between different 

categories or classes accurately. During training, the model assigns a probability to 

each possible class for each detected object, and the class loss measures how well 

these predictions match the actual labels. Minimizing class loss is crucial for 

improving the model's ability to correctly classify objects, ensuring high accuracy 

in identifying various classes. This process involves iterative adjustments to the 

model's parameters, guided by the loss function, to enhance its predictive 

performance. Effective management of class loss, in conjunction with other losses 

like box loss, is essential for developing robust and reliable object detection systems 

that perform well across diverse datasets and real-world scenarios. 
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iii. DFL (Distribution Focal loss) 

Distribution Focal Loss (DFL): Distribution Focal Loss extends the idea of focal 

loss by incorporating the distribution of the dataset into the loss function. The goal 

is to ensure that the loss function considers the distribution of classes, giving more 

importance to classes that are under-represented in the training dataset. This can 

help the model to learn better representations for minority classes, improving the 

overall detection performance, especially for rare pests. Distribution Focal Loss in 

the context of deep learning for pest detection is a loss function that helps to 

mitigate the impact of class imbalance by dynamically adjusting the focus on 

different classes based on their distribution in the dataset. This leads to improved 

detection of rare pest species, which are often the most challenging to identify 

accurately. 

3.7.3.5 Frames Per Second (FPS)  

Frames Per Second (FPS) measures how many video frames the model can 

analyze in one second. A higher FPS indicates that the model could process more 

frames per second, making it faster and more efficient in real-time scenarios. FPS 

detection speed in the performance evaluation matrix for YOLOv8 refers to the 

number of frames per second that the model can process and make predictions. This 

metric is crucial for evaluating the real-time performance of the model. This speed 

is influenced by factors such as: 

1. Model Complexity: More complex models with higher accuracy often require 

more computational power and time to process each frame, resulting in lower FPS. 

2. Hardware: The type and capability of the hardware (CPU, GPU, memory) 

significantly affect the FPS. More powerful hardware can process frames faster. 

3. Input Resolution: Higher resolution inputs require more computation, which can 

reduce FPS. 

4. Batch Size: Batch size is the number of training examples utilized in one iteration 

of model training. The number of frames processed simultaneously can impact FPS. 
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Larger batch sizes can utilize hardware more efficiently but might introduce 

latency. 

3.7.3.6 Inference Time 

Inference time in YOLOv8 refers to the amount of time it takes for the 

model to process a single image or frame and produce output, such as bounding 

boxes and class probabilities. This metric is crucial for real-time object detection 

applications. The inference time depends on various factors, including the hardware 

used (such as GPU, CPU, or TPU), the model architecture and size, input image 

resolution, batch size, and the framework and implementation used (like PyTorch 

or TensorFlow).  

3.7.3.7 Detection speed 

Detection speed in YOLOv8 refers to the rate at which the model can detect 

objects in images or videos, measured in frames per second (FPS). It is a critical 

performance metric for real-time object detection applications, where the goal is to 

quickly and accurately identify objects in a stream of images or video frames. The 

YOLOv8 detection speed is influenced by factors such as the hardware used, model 

architecture, input image resolution, and optimization techniques employed.  A 

higher detection speed indicates better performance, with YOLOv8 aiming to 

achieve detection speeds of 30 FPS or higher, depending on the specific use case 

and hardware configuration.  

3.8 WEB APPLICATION DEVELOPMENT FOR REAL-TIME MODEL 

TESTING 

  Following training the YOLOv8 model for pest detection, the model was 

converted into a format that could be readily integrated into a web application. This 

was accomplished by the following steps 

3.8.1 WEB PAGE CREATION 

 In this study, a web application is developed to detect red pumpkin bettles 

in real-time field conditions. For this, ‘Notepad’ in Windows is used, which is a 
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basic text editor that can be used to create web pages. Web pages are created with 

1. ‘HyperText Markup Language ’ (HTML) is used to create structure content, 

define layout, add multimedia, tables, etc, 2. ‘Cascading Style Sheets (CSS)’ used 

for styling and layout purposes and  3. ‘JavaScript’ helps to create buttons, 

animations, special effects, menus, etc. In assessing real-world detection of pests 

on the web pages, three procedures were adopted: 1.  By uploading real field photos, 

2. by uploading videos taken from the field, and 3. by uploading real-time field data. 

Using various media sources, the detection system's effectiveness could be enriched 

in the evaluation process.  

Since buying a field web camera was beyond the scope of this study, the 

webcam on a laptop was used for real-time pest detection. The pumpkin leaf and 

dead pests taken from the field were framed on cardboard to access it through the 

laptop's webcam. Thus, real-time pest detection was achieved via the web 

application. 

3.8.1.1 Web page creation strategy 

 Webpage is created by using ‘Notepad’. The HTML document is structured 

to include a 'head' section that contains metadata, styling, and CSS used for a clean 

layout and design. The 'body' section defines the content, featuring a page title, 

buttons for uploading photos and videos, a video element for the webcam feed, and 

a button to start and stop the webcam. Additionally, custom-styled buttons are 

created to trigger file input elements for uploading photos and videos. Overall, the 

HTML document effectively incorporates functionality to stream video from the 

webcam and provides user-friendly options for uploading photos and videos, 

making it a comprehensive and interactive web page. JavaScript functions are 

incorporated with Python language to create the web page's backend. The backend 

(server side) is the portion of the website responsible for storing and organizing 

data and ensuring everything. The backend communicates with the frontend, 

sending and receiving information to be displayed as a web page. It contains the 

algorithms developed during the model's Training, Validation and Testing. Finally, 

the detection takes place. 

https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
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Fig. 3.6 The code developed for the front interference of the webpage 
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Fig. 3.7 Code developed for the back end of the webpage for pest detection 
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Results And Discussion 
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CHAPTER – IV  

RESULTS AND DISCUSSION 

A smart pest detection model based on deep learning architecture was 

developed for the detection of the pest, red pumpkin beetles in the field. Roboflow 

was used as a conversion tool for data annotation, preprocessing, and augmentation. 

YOLOv8l was the object detection model used to develop the model. It is a CNN-

based architecture. The results pertaining to data preparation, model development, 

performance assessment, and web application development for real-time pest 

detection were explained under the following subtitles.  

4.1 PREPARATION OF CUSTOMISED DATASET  

Roboflow was used as the conversion tool to prepare a customized dataset 

from the collected raw data. The images were annotated using Roboflow to provide 

labels or bounding boxes for objects of interest within the images or frames. The 

data was annotated manually and classified into 3 classes viz. pest (Yellow box), 

no pest (purple box), and affected (red box). The dataset was pre-processed by two 

preprocessing methods, viz. 1. resizing images and 2. converting to greyscale. The 

data was augmented to increase the number of images for training. The total images 

were split randomly into 3 sets by Roboflow: the training set, the validation set and 

the test set. Finally, the annotated and augmented data sets were converted into 

various formats in order to train the YOLOv8l model. 

4.1.1 Data annotation using Roboflow 

A total of 610 images collected from the field and the website Shutterstock 

were annotated and categorized into three classes. Fig 4.1 shows the images after 

annotation a. with pest infestation on a leaf (class named as ‘pest’) represented by 

yellow box b. healthy leaves without pest (class named as ‘no pest’) represented by 

purple box and c. leaves affected by pest (class named as ‘affected’) represented by 

red box  
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(a) 

 

 

  

Fig. 4.1 Annotated images (a) with pest) (b) without pest (c) affected 

 

(b) 

 (c) 
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4.1.2 Dataset pre-processing using Roboflow 

By Pre-processing the dataset, the data was cleaned and standardized to 

make them ready for the model. The results of various pre-processing steps are 

explained as follows 

4.1.2.1 Converting to Grayscale 

 Converting images to grayscale is a common preprocessing step in deep 

learning tasks, especially when dealing with tasks where colour information might 

not be relevant or could potentially introduce noise to the model. simplifies the data, 

reduces computational load, and emphasizes important structural features. This can 

lead to more efficient and effective training of machine learning models The image 

after converting to grayscale is shown in Fig. 4.2. 

 

 

4.1.2.2 Resizing 

 Resizing images is an essential step in the data processing pipeline. Because 

YOLOv8 models require fixed-size input images, resizing ensures that all input 

images are of the same size before being fed into the model, which simplifies the 

training process. This will allow efficient processing by the model, reducing 

Fig. 4.2 Image converted to Gray scale  
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computational load and improving training speed. Hence the image was resized 

from 4032x3024 px to 800x800 px. The image after resizing is shown in Fig. 4.3.  

 

Fig. 4.3 Image Resized 

4.1.3 Data augmentation using Roboflow 

 The various data augmentation techniques commonly used in deep learning, 

such as Rotation, flipping, Noise addition, colour adjustment, etc, were done.  

4.1.3.1 Rotation 

Training the model on rotated images makes it more robust and less 

sensitive to orientation changes, improving its ability to detect objects regardless of 

their rotation. This helps in detecting pests in diverse and varied real-world 

conditions. The image after rotation is shown in Fig. 4.4 
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4.1.3.2 Flipping 

Flipping an image horizontally (left-to-right) or vertically (top-to-bottom) 

helps the model generalize better by providing additional training data with minimal 

additional labelling effort. Flipping images adds more variety to the training dataset, 

helping to reduce overfitting and improve the model's ability to generalize. The 

image after flipping is shown in Fig. 4.5.  

Fig. 4.4 Image Rotated 15° 

Fig. 4.5 Image Flipped vertically and horizontally 
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4.1.3.3 Noise Addition 

  The purpose of adding noise is to introduce variability into the training data, 

which can help the model to detect and identify pests even when the images are not 

perfect. Noise addition simulates real-world scenarios where images may be 

corrupted by noise. The image after noise addition is shown in Fig. 4.6. 

 

 

Fig. 4.6 Image after Noise addition 

4.1.3.4 Colour Adjustment 

By adjusting the colours of images, it is possible to diversify the training 

data, making the model more robust to variations in lighting conditions, camera 

settings, and other factors. Colour adjustment simulates real-world scenarios where 

objects may appear in different lighting conditions or colours, making the model 

more robust. The image after colour adjustment is shown in Fig. 4.7. 
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4.1.3.5 Shearing 

 Shearing helps the model to detect pests in real field even when the leaves 

are viewed from oblique angles or when the camera is not perfectly aligned. The 

image after shearing is shown in Fig. 4.8. 

 

 

 

4.1.3.6 Cropping 

Cropping involves removing portions of an image, which can help the model 

learn to focus on relevant parts of the image and improve its generalization 

capabilities. Cropping simulates how objects may appear in different environments, 

 Fig. 4.7 Image after Colour adjustment 

Fig. 4.8 Image after Shear augmentation 
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such as cropped views or partial occlusions. It helps the model to detect pests even 

if some part of the pest is visible. The image after cropping is shown in Fig. 4.9. 

 

 

 

4.1.3.7 Hue 

Hue is a form of colour augmentation that can be beneficial in data 

processing for YOLOv8. Real-time images captured in real-time in different 

lighting conditions (e.g., sunlight, shade, artificial light) can cause colour shifts in 

images. Hue augmentation helps the model focus on object features rather than their 

colour, leading to improved object detection. The image after Hue augmentation is 

shown in Fig. 4.10. 

 

Fig. 4.9 Image after Cropping 

Fig. 4.10 Image after Hue Augmentation 
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4.1.3.8 Blur 

Blur augmentation helps the model learn to detect objects even in low-quality 

or blurry images, making it more robust to image degradation. It can detect pests in 

real-time even when they become blurred due to camera movement or falling 

raindrops. The image after Blur augmentation is shown in Fig. 4.11 

 

 

 

 

 

 

 

4.1.3.9 Exposure 

Adjusting exposure is another form of data augmentation that can enhance 

the robustness and generalization of object detection models like YOLOv8. 

Exposure augmentation helps the model generalize better to new, unseen images by 

exposing them to various lighting conditions. Exposure adjustment involves 

modifying an image's overall brightness or darkness, which can simulate variations 

in lighting conditions and improve the model's ability to handle 

Fig. 4.11 Image Blurred 

Fig. 4.12 Image after Exposure 

augmentation 
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different environments. The image after Exposure augmentation is shown in Fig. 

4.12 

4.1.3.10 Cutout  

Cutout augmentation helps the model learn to detect objects even when they 

are partially occluded or cut off, making it more robust to real-world scenarios. 

Cutout augmentation involves randomly removing patches of pixels from an image 

during training. This technique helps to improve the model's robustness by 

encouraging it to focus on different parts of the image, preventing overfitting and 

enhancing generalization. The image after Cutout augmentation is shown in Fig. 

4.13 

 

Thus, after data augmentation, a total of 1462 images (i.e., 610 raw images 

+ 852 augmented images) were created to train the model. The result of 

augmentation is a richer and more varied training dataset, which leads to a model 

that is more accurate, reliable, and capable of performing well on new, unseen data.  

4.1.2 Data health checkup 

After the data preparation, a data health checkup was done by two methods 

1. Annotation heatmap and 2. Histogram equalization. 

Fig. 4.13 Image after Cutout augmentation 
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4.1.2.1 Annotation heatmap 

 

Fig.4.14 Annotation Heatmap of the model 

It’s a map where different colours show how much pest is present in 

different areas. Blue colour indicates there's low pest density, green colour indicates 

there's medium pest density, and yellow colour indicates there is high pest density. 

This heatmap shown in Fig. 4.14 revealed that the pest has the most amount present 

right in the middle of the image and less as it moves away from the center of the 

image. 

4.1.2.2 Histogram equalization 

 This graph displays the number of objects present in various images. The 

majority of photos have exactly 1 PEST object (341 photos). Some photos have 2 

PEST objects (130 photos), and very few numbers of photos have 3 PEST objects 

as shown in the histogram (Fig.4.15). 

Fig.4.15 Histogram 
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After a thorough health check of the dataset, it was confirmed that the 

annotated, pre-processed, and augmented data are suitable for modeling. 

4.2 COMPARISON OF DIFFERENT VARIANTS OF YOLOV8 AND 

SELECTION OF BEST VARIANT FOR MODEL TRAINING  

Compared the different variants of the YOLO network to select the best one 

for the current data. The comparison study is shown in Table 4.1.  YOLOv8n had 

very low precision (0.19), meaning it incorrectly identifies many objects, but it has 

decent recall (0.80), meaning it finds most of the objects. The overall scores (PR 

curve and F1 curve) are somewhat moderate. YOLOv8s had much higher precision 

(0.84) and recall (0.83) than YOLOv8n, leading to better overall scores. The 

YOLOv8l version performed the best with the highest precision (0.92), recall 

(0.88), and overall scores (PR curve 0.94, F1 Score 0.86). Hence YOLOv8l was 

found best at correctly detecting objects and finding all the objects in an image, 

making it the most accurate and reliable version among the three for the current 

data. Therefore, it proved that the training speed of the network had indeed 

increased in YOLOv8l during the early training state itself. Hence YOLOv8l was 

selected for model training in this study.  

Table 4.1 Comparison experiment of YOLOv8 versions of different complexity 

for the current data  

 P curve R curve PR curve F1 curve 

YOLOv8n 0.19 0.80 0.74 0.92 

YOLOv8s 0.84 0.83 0.88 0.84 

YOLOv8l 0.92 0.88 0.94 0.86 

 

YOLOv8l (Larger) architectures can detect more complex patterns and 

extract better features from images. Pest detection often demands real-time results 

for swift decision-making and timely implementation of corresponding measures. 

YOLOv8l has better precision and recall, improved detection of small and difficult-

to-distinguish objects, has a deeper network with more convolutional layers, 
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processes high-resolution images more effectively, and handles a larger number of 

object classes efficiently. Hence, YOLOv8large was selected in this study. 

4.3 MODEL DEVELOPMENT 

 When training the network model for red pumpkin beetle object detection, 

the dimensions of the input image are uniformly modified to 800X800px. The 

‘Adam W optimizer’ in YOLOv8 is utilized with a total of 50 epochs (the number 

of epochs refers to the number of times the entire training dataset is passed forward 

and backward through the neural network during the training process) with a 

learning rate of 0.002 and batch size of 16. The loss values gradually decrease over 

epochs, indicating that the model is run effectively. Additionally, the precision (P) 

and recall (R) values are improving, suggesting better detection performance. The 

mean Average Precision (mAP) is also increasing, which is a positive sign of the 

model's overall effectiveness. The size of the custom weight file generated was 65 

MB. The number of convolutional layers in the trained model was 56. 

4.4 PERFORMANCE EVALUATION AND ACCURACY ASSESSMENT 

4.4.1 Confusion Metrix:  

A confusion matrix is a powerful tool for evaluating the performance of a 

detection model. It provides detailed insight into how well the model is performing 

in terms of correctly and incorrectly classified instances for each class. In the 

context of a confusion matrix, especially for a classification problem involving 

multiple classes, "background" typically refers to a class that represents all 

categories that are not of primary interest where the model must distinguish 

between foreground objects (the primary classes of interest) and the background 

(everything else). 
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Fig. 4.16 Confusion matrix of validation of YOLOv8l model  

 

The confusion matrix has been reformatted into a 2x2 matrix, with the class 

"pest" considered as the positive class and the other three classes ("no pest," " 

affected," and "background") grouped together as the negative class. This 

simplification facilitates calculating accuracy, precision, recall, and other 

performance metrics specifically for the "pest" class. Below (Table 4.2) is the 

resulting 2x2 matrix representing the model's validation performance. 

Table 4.2 Confusion matrix of validation of YOLOv8l model 

 

 

 

 

 

 

 Predicted Positive     Predicted 

Negative 

Actual Positive         100 16 

Actual 

Negative         

13 42 
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True Negatives (TN), False Positives (FP), and False Negatives (FN) in the 

context of classification were as follows: 

● True Positives (TP): Images that were accurately detected and categorized 

as “pest” in this study TP=100 

● True Negatives (TN): True Negatives are those cases in which the document 

was appropriately labelled as “no pest” even though it had nothing to do 

with pest. In this study TN=42 

● False Positives (FP): Images that were mistakenly categorised as “pest 

present” even though they had nothing to do with pest. In this study FP=16 

● False Negatives (FN): Examples of documents that were mistakenly 

labelled as “No pest,” but in reality, they were pest present. In this study 

FN=13 

● Thus, obtained counts are : TP=100, TN=42, FP=16, FN=13 

● Finally, accuracy, precision and recall were calculated from this as follows 

4.4.1.1 Accuracy 

The model's accuracy represents the proportion of correct predictions (both 

pests detected when a pest is present and no pest detected when no pest is present) 

among the total number of cases. The model has an accuracy of 83%, meaning it 

correctly identifies the presence or absence of pests in 83% of the cases. 83% 

accuracy of model is generally considered to be a fairly good model. 

I.e., Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   =

100+42

100+42+16+13
 =0.830=83% 

4.4.1.2 Precision 

The precision of YOLOv8, based on the assumed detection results, is 0.86 

(or 86%). This means that 86% of the objects detected by YOLOv8 are true 

positives, while the remaining 14% are false positives. An 86% accuracy is 

generally considered a solid performance of model. 

I.e., 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 =

100

100+16
 = 0.86=86% 
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4.4.1.3 Recall 

The recall of YOLOv8, based on the assumed detection results, is 

approximately 0.88 (or 88%). This means that YOLOv8 correctly identifies 88% of 

all actual objects, with the remaining 12% being missed (false negatives). These 

metrics indicated that YOLOv8 has a high recall, meaning it is effective at detecting 

most of the objects present in the dataset, with a good, but slightly lower precision. 

I.e., 𝑅𝑒𝑐𝑎𝑙𝑙=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 =

100

100+13
 =0.88=88% 

Hence it can be concluded that the model is fit for prediction. 

4.4.1.4 FI score  

The F1 score is a single metric that combines both precision and recall, 

giving a balanced measure of the system’s accuracy. 

F1 Score=2 X
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛X𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

F1 score of 86.9% indicated that the model has a good balance between 

precision and recall.  

4.4.2 Precision Confidence curve 

The graph shown in Fig. 4.16 is a precision-confidence curve, which 

shows how precision changes with varying confidence thresholds for different 

classes. 

= 2 ×
86 × 88

86 + 88
 

 

 

 

= .869 =86.9% 
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Fig. 4.17 Precision confidence curve for validation of model. 

4.4.2.1 Axes: 

    X-axis Represents the confidence level of predictions. This typically ranges 

from 0 to 1, where 0 indicates no confidence and 1 indicates full confidence in the 

prediction. Y-axis represents the precision of the model. Precision is the ratio of 

true positive predictions to the total number of positive predictions (true positives 

+ false positives). 

4.4.2.2 Curves: 

  Different Coloured Lines: Each coloured line represents the precision-

confidence relationship for different classes. Light Blue (PEST), Orange (affected), 

Green (no-pest), and thick blue line represent the precision across all classes 

combined at a specific threshold of 0.928. 

i. PEST (Light Blue Line): 

As confidence increases from 0 to about 0.2, precision increases sharply, 

indicating that at low confidence levels, there are many false positives. 

Precision continues to increase, peaking around a confidence level of 0.6 to 

0.8. After this peak, precision drops, suggesting that extremely high-confidence 

predictions may not always be precise. 

ii. Affected (Orange Line): 

Initially, precision increases with confidence, but at a slower rate compared 

to PEST. Precision peaks at a lower value (around 0.6) and then decreases 
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more erratically. This suggested that the model has more difficulty in making 

precise predictions for the 'affected' class as confidence increases. 

iii.No-pest (Green Line): 

This line showed a sharp increase in precision very quickly, reached a high 

level at a low confidence threshold. It remained high and stable, indicated 

that predictions for the 'no-pest' class are precise even at lower confidence 

levels. 

iv.Threshold of 0.928:  

This line indicated that at a confidence threshold of 0.928, the precision for 

all classes combined is 1.00. This means that if the model only considers 

predictions with a confidence level of 0.928 or higher, it will make no false 

positive errors (100% precision). 

4.4.3 Recall-Confidence Curve 

The graph shown in Fig. 4.17 is a recall-confidence curve, which showed 

how precision changes with varying confidence thresholds for different classes. 

 

Fig. 4.18 Recall confidence curve for validation of model 

4.4.3.1 Axes: 

X-axis, represents the confidence threshold of the model. The confidence 

threshold determines the minimum confidence score a prediction must have to be 
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considered a valid detection. It ranges from 0 to 1. Y-axis, represents the recall, 

which is the proportion of actual positive instances that were correctly identified by 

the model. Recall also ranges from 0 to 1. 

4.4.3.2 Lines: 

  PEST (Blue Line) line shows the recall for the 'PEST' class as a function of 

the confidence threshold. The Orange Line showed the recall for the 'affected' class 

as a function of the confidence threshold. No-pest (Green Line) line showed the 

recall for the 'no-pest' class as a function of the confidence threshold. All classes 

(Thick Blue Line) line showed the combined recall for all classes as a function of 

the confidence threshold. The label indicated that at a confidence threshold of 

0.000, the combined recall is 0.88 indicating that 88% of all actual positives across 

all classes are detected. The recall decreases as the confidence threshold increases, 

higher confidence thresholds result in fewer detections. 

4.4.4 Precision-Recall Confidence Curve 

A Precision-Recall (PR) curve as shown in Fig.4.18 is a graphical 

representation used to evaluate the performance of a binary classifier, particularly 

in scenarios where the classes are imbalanced.  

Fig. 4.19 Precision-recall curve for validation of the model 

4.4.4.1 Axes: 

The X-axis represents recall and the Y-axis represents Precision.  
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4.4.4.2 Lines: 

  Different Coloured Lines: Each coloured line represents the precision-

Recall relationship for different classes. Light Blue (PEST), Orange (affected), 

Green (no-pest), and thick blue line represent the precision-Recall across all classes. 

i.“PEST" Curve (blue curve): 

This curve started with high precision and high recall, indicating the model's 

ability to correctly identify "PEST" instances with minimal false positives and false 

negatives initially. The curve maintained high precision as recall increases but 

showed some decline towards the end. Thus, this curve represents the precision-

recall relationship for the class labeled "PEST" with an average precision 

ii.“affected" Curve (orange curve): 

This curve showed that precision dropped quickly as recall increased. This 

suggested that while the model correctly identified some "affected" instances, it 

also had a high rate of false positives as it tried to recall more instances. This curve 

represents the precision-recall relationship for the class labeled "affected". 

iii.“no-pest" Curve (green curve): 

The green curve indicated very high precision and recall for the "no-pest" 

class. This curve represents the precision-recall relationship for the class labeled 

"no-pest". This suggests the model performs excellently in identifying "no-pest" 

instances with almost no false positives and false negatives. 

iv. Overall Curve ("all classes"): Thick blue colour 

The thick blue curve represented the average performance across all 

classes.The curve started with high precision and recall but showed a gradual 

decline, indicating the model's performance varies across different classes. 
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4.4.5 Average precision  

Average precision is high when both precision and recall are high, and low 

when either of them is low across a range of confidence threshold values. The range 

for AP is between 0 to 1. Here, it is estimated as AP=0.91, indicating the model is good. 

Since the Average Precision is nearing 1, the model is efficient. 

4.6.6 Mean Average Precision 

It is the average of the average precision over all classes. mAP is a 

comprehensive measure that summarizes the precision-recall performance across 

different classes and thresholds. If mAP is high for a matric used to measure the 

performance of a model that focuses on object detection tasks and information retrieval 

on images would be done accurately. Here it is estimated as mAP =0.89. Both average 

precision and mean average precision indicated good performance of the model.  

4.6.7 Loss function curve 

The loss function curves of the model is shown in Fig. 4.20. The details of the 

curves are as follows. 

 

Fig. 4.20 Loss function curve of YOLOv8 model training and validation 
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Top Row represents Training Metrics 

i.train/box_loss: 

X-axis (Epochs/Iterations) represents the training time, usually in terms of 

epochs or iterations. Y -axis (Loss Value) represents the value of the bounding 

box loss. 

This plot showed the loss associated with the bounding box predictions during 

training. The loss started around 2.1 and gradually decreased to around 1.5. This 

indicated that the model is improving its ability to predict bounding boxes correctly 

over time. 

ii.  train/cls_loss: 

    This plot shows the classification loss during training. The loss started 

around 3.0 and decreased steadily to about 1.5. This showed that the model is 

improving in classifying objects correctly as training progresses. 

iii. train/dfl_loss: 

    This plot likely shows the distribution focal loss during training, a type of 

loss used to improve the quality of predicted bounding boxes. The loss started at 

approximately 1.9 and decreased to about 1.5, indicating improvement in the 

model's predictions. 

iv. metrics/precision(B): 

    This plot shows the precision metric during training. Precision measures the 

accuracy of the positive predictions. Precision fluctuates, but shows an overall 

increasing trend towards the end, stabilizing around 0.8. This suggested that the 

model becomes more accurate in its positive predictions. 

v. metrics/recall(B): 

This plot shows the recall metric during training. Recall measures the ability 

of the model to identify all relevant instances. Recall started low and increased 
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significantly to around 0.8. This indicated that the model is improving its ability to 

detect relevant instances over time. 

Bottom Row represents Validation Metrics 

vi. val/box_loss: 

    This plot shows the bounding box loss during validation. The loss started 

around 2.2, with some fluctuations, and decreased to about 1.8. This indicated that 

the model's performance on the validation set is improving, although it fluctuates 

more compared to the training loss. 

vii. val/cls_loss: 

This plot shows the classification loss during validation. The loss started 

high at 3.0, dropped sharply, and then continues to decrease more gradually to 

around 1.8. The initial sharp drop suggested that the model quickly learns to classify 

objects better, and further training improves this ability. 

viii. val/dfl_loss: 

    This plot shows the distribution focal loss during validation. The loss started 

around 1.9, decreases with fluctuations, and stabilized around 1.5. The decreasing 

trend indicated better performance on the validation set. 

ix. metrics/mAP50(B): 

    This plot shows the mean Average Precision (mAP) at the threshold of 0.50 

during validation. mAP50 started low and increases steadily to about 0.7. This 

indicated that the model's ability to correctly predict object locations and classes is 

improving. 

x. metrics/mAP50-95(B): 

This plot shows the mean Average Precision across thresholds from 0.50 to 

0.95 during validation. mAP50-95 showed a steady increase, starting around 0.10 

and reaching approximately 0.30. This suggested an overall improvement in the 

model's detection performance across various thresholds. 
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General Observations about Loss Function Curves   

• Smoothing: The orange dashed line represents a smoothed version of the 

metric, helping to visualize the overall trend without the noise of 

individual fluctuations. 

• Training vs. Validation: Both training and validation losses showed a 

decreasing trend, indicating that the model is learning effectively. 

However, validation losses had more fluctuations, which is common and 

indicated variability in how the model generalizes to unseen data. 

• Precision and Recall Trends: Precision showed some fluctuations but 

stabilizes towards the end of the training, while recall showed a more 

consistent increase, indicating overall improvement in model performance. 

• mAP Trends: Both mAP50 and mAP50-95 metrics showed increasing 

trends, suggesting the model's predictions are becoming more accurate and 

robust. 

Overall, these plots indicated that the model is learning and improving over time, 

as evidenced by the decreasing losses and increasing evaluation metrics. 

i. Box Loss 

Box loss in deep learning, also known as bounding box loss, is a loss function 

used in object detection tasks. The loss is calculated based on the difference 

between the predicted bounding box and the actual bounding box. The goal is to 

minimize the loss to improve the accuracy of object detection. The box loss is 

typically calculated for each object in the image, and then the losses are summed or 

averaged to get the total box loss. Box loss helps the model to learn the accurate 

location and size of objects in the image. 

ii. Class Loss 

Class loss in image detection, also known as classification loss or categorical 

loss, is a loss function used in object detection tasks to measure the difference 

between the predicted class labels and the true class labels of objects in an image. 

The goal is to minimize the class loss to improve the accuracy of object 
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classification. The class loss is typically combined with other loss functions, such 

as box loss (for bounding box regression) to train object detection models like 

YOLO. 

iii. DFL (Distribution Focal Loss)  

DFL (Distribution Focal Loss) is a loss function used in image detection tasks, 

particularly in object detection algorithms like Faster R-CNN and RetinaNet. DFL 

loss aims to 1. Improve object detection accuracy, 2. Reduce the impact of class 

imbalance 3. Enhance the detection of hard examples.  Object detection models can 

improve their accuracy and robustness using DFL loss, especially in scenarios with 

class imbalance and hard examples. All losses were found to be low, indicating the 

good performance of the model. 

4.5 REAL TIME PEST DETECTION  

Following training the YOLOv8 model for pest detection, the model was 

converted into a format that could be readily integrated into a web application. Fig.4.21 

shows the homepage created for real-time pest detection. The pest detection on the 

web page was implemented by developing the front-end using HTML and the back 

end using Python in PyCharm. This setup enabled pest detection by allowing users 

to upload images on the web page.  Since no webcam was installed in the field, real-

time pest detection was tested in three ways. I.e. the pest was detected by utilizing 1. 

Real-time photos taken by mobile camera from field 2. Real-time videos taken from 

Fig.4.21 Home page of web page 
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the field 3. Real-time photos taken by the webcam of a laptop. The photo images, videos 

and webcam photos were fed to the web application homepage for pest detection.  

4.5.1. Detection of pests from photos taken by the mobile camera from the real 

field 

The images captured were fed into the home page of the web application and 

detected pests within a remarkable 2.2 milliseconds. Fig. 4.22 shows an example of 

images displaying the presence of pests along with bounding boxes representing 

their detection. 

(a)                                                                  (b) 

 

 

 

 

   

(c)                   (d) 

Fig.4.22 Pest detection by a photo taken from the field 
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4.5.2. Detection of pests from videos taken from actual field   

In uploaded videos, the captured visuals were processed by the code, leading 

to the detection of pests at an impressive rate of 11 frames per second (FPS). Fig. 

4.23 shows examples of video frames showcasing the presence of pests, 

accompanied by bounding boxes representing their detection. 

4.5.3 Real-time pest detection by using a laptop webcam 

The real-time detection of pests stuck on the leaves was successfully 

achieved using a laptop webcam. The images below depict the frame-by-frame 

detection results in real-time.  

Fig. 4.23 Pest detection from videos in different frames 
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4.6 FRAMES PER SECOND, DETECTION SPEED, AND INFERENCE TIME 

High FPS (Frames Per Second) and detection speed and low inference time 

indicate a robust and efficient model suitable for a wide range of practical 

applications. In this study, FPS was found 10-12, Inference time 3095 ms and the 

detection speed 1ms. Detection speed encompasses the overall efficiency and 

rapidity with which the model can detect and process objects within frames. It 

integrates both FPS and inference time to provide a comprehensive measure of the 

model's detection performance. All three parameters were found satisfactory, 

indicating the goodness of the model.  

  The developed web application has shown promising results in precisely 

and efficiently recognizing the target pests. The application can identify pests in 

real-time with the help of YOLOv8l model, making it a vital tool for farmers and 

pest control experts. The app’s user-friendly and simple features make it accessible 

to a larger audience, allowing even non-experts to spot pests. 

Frame 1 Frame 2 

Frame 3 

Fig. 4.24 Real time detection in different frames using laptop webcam   
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CHAPTER - V 

SUMMARY AND CONCLUSION 

 The study proposed a deep learning-based object detection model for pest 

detection in an agriculture field crop. The study was conducted in a pumpkin field 

in the KCAE&FT instructional farm to detect the pest ‘red pumpkin beetle’. The 

object detection model YOLOv8l was used for the study. Roboflow was used as the 

conversion tool for customized data set preparation. The images were collected 

from the field and the website ‘Shutterstock’ to prepare the dataset for training the 

model. The study consisted of 570 images which were meticulously curated from 

various shooting distances and heights, incorporating diverse levels of occlusions 

and lighting intensities, and 40 images were taken from a website named 

‘Shutterstock’. Thus, 610 images were subjected to thorough pre-processing and 

augmentation techniques to enhance dataset diversity and quality by using 

“Roboflow,” which is a comprehensive platform designed to facilitate the 

development and deployment of customized datasets. Model training was done in 

Google Colab, it provides the YOLO version, including YOLOv8l, with intensive 

training, guaranteeing a quick and effective training procedure. It is developed with 

the help of libraries like Ultralytics. When training the network model for red 

pumpkin beetle object detection, the dimensions of the input image are uniformly 

modified to 800X800px. The ‘Adam W optimizer’ in YOLOv8 is utilized with a 

total of 50 epochs with a learning rate of 0.002 and batch size of 16. The size of the 

custom weight file ‘last.pt’ generated was 65 MB. The number of convolutional 

layers in the trained model was 56. The model was validated and tested in Pycharm 

using libraries Ultralytics, Opencv, and Flask.  

YOLOv8l enables the real-time processing and streaming of frames from 

uploaded videos for pest detection. The output presents Box metrics, offering 

insights into the model's object detection capabilities. YOLOv8l was shown to be 

the most successful model among the different variants of YOLOv8 for the data 

used in this study, with a remarkable of precision (P) 86%,accuracy 83% mean 
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average precision (mAP) .89, F1-score 86.9%, and recall 88% respectively add 

more about the model's accuracy and performance 

A web application was developed to aid farmers and agricultural 

professionals for real-time pest detection. The research showed that the algorithm 

counted correctly 83%, which was the best result in the study. The algorithm 

performed exceptionally well during this study, making very few errors in detecting 

pests. This high accuracy suggests that the algorithm could be useful for real-world 

farming. 

This study demonstrated the effectiveness of YOLOv8l in detecting pests in 

images with high accuracy and speed. The model could be a valuable tool for 

farmers, agricultural professionals, and researchers to quickly and accurately 

identify pests, enabling early intervention and control. The model's ability to detect 

pests in real-time makes it a promising solution for integrated pest management 

strategies. Overall, this study provides a valuable contribution to the field of pest 

management in agriculture, demonstrating the effectiveness of deep learning-based 

object detection models for detecting pests and their potential for integration with 

real-time spraying technologies. 
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ABSTRACT 

 A study was conducted to develop smart pest detection for an agricultural 

field crop based on deep-learning object detection. The study selected the 

agricultural field crop pumpkin, and the red beetle pest was detected. The study 

developed a deep learning-based object detection model using the YOLOv8l. 

Roboflow was used as the conversion tool for customized data preparation. The 

performance and accuracy of the model were found to be satisfactory. The 

integration of the model with the web application was done for real-time pest 

detection. 

 The proposed approach has the potential to aid farmers in identifying the 

existence of pests, thereby diminishing the duration and resources needed for farm 

inspection. The YOLOV8l object detection model was implemented for the purpose 

of pest classification, localization, and quantification. The proposed pest detection 

approach demonstrated a noteworthy increase in performance in terms of precision 

(P) 86%, mean average precision (mAP) .89, F1-score 86.9%, and recall 88%. A 

web application was developed to aid farmers and agricultural professionals in real-

time pest detection. 

 The study concluded that integrating deep learning techniques holds 

immense promise for revolutionizing smart pest detection in agriculture. By 

harnessing the power of artificial intelligence, farmers can transition towards more 

sustainable and efficient pest management practices, contributing to food security, 

environmental conservation, and economic prosperity. 

 

 

 

 

 

 


