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CHAPTER I  

INTRODUCTION 

Climate encompasses all the physical attributes of our environment, including 

temperature, precipitation, air pressure, and humidity. When these factors undergo 

alterations, whether due to natural processes or human activities, it leads to the 

phenomenon known as climate change. In the twenty-first century, climate change stands 

out as a paramount global challenge. Its repercussions are expected to intensify over time. 

The escalating risk of food shortages due to climate change is a matter of great concern, 

presenting multifaceted threats to global food production. These challenges are further 

compounded by the scarcity of freshwater resources, a problem projected to worsen in the 

future. Climate change also contributes to a range of environmental hazards, including 

the increased frequency of extreme events such as floods and droughts. Climate change, 

driven by the increase in global temperatures has significant impacts on various areas like 

human health, rising sea levels, glacier melting, and alterations in precipitation patterns. 

Consequently, the world has witnessed a surge in severe droughts, floods, and other 

extreme weather events (Abbas et al.,2024).  

 Climate change affects all sectors of society due to changes in temperature and 

precipitation patterns and will continue to do so in the foreseeable future. Extreme 

weather events are already more frequent and intense, generating additional costs for 

businesses nationally and globally. Climate risk disclosure and management can be 

challenging due to the complexity of climate impacts and unpredictability of extreme 

events’ occurrence and location. 

Both the physical impacts of climate change and transitional risk stemming from 

policies to reduce emissions of GHGs, already affect all sectors of society. The value of 

assets at risk from climate change is expected to range from 4.2 to 43 trillion USD 

globally between now and 2100, dependent on which climate change scenario 

materializes. Shifts in temperature and precipitation patterns can affect crop yields and 

consequently, food security. Extreme weather events can cause substantial physical 

damage to buildings and critical infrastructure along with economic damage, leading to 

reduced economic growth. 
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Scenarios are coherent narratives that describe plausible future outcomes and are 

used to identify and assess climate implications based on a range of assumptions 

regarding future GHG emissions, demography, and socio-economic development. The 

inclusion of high-warming and low-warming climate change scenarios allows for 

consideration of different levels of climate change impacts. Disasters emanating from 

climate change are a significant worry, but the manner in which it is intertwined with 

political processes is deeply rooted in social and structural context—more so in the 

South. Climate induced disaster policies in South Asia have attracted significant interest 

in research and advocacy and thus occupy prominent positions at both state and district 

levels (Torvanger et al.,2024). 

The extreme precipitation events are evident and prominent worldwide, including 

the Indian region, which causes a significant impact on agriculture, loss of land, 

migration of people, etc. Indian agriculture and economy are dependent on summer 

monsoon occurrence, which accounts for nearly more than 75% of yearly rainfall. During 

Past years, India has observed several extreme precipitation events due to high variability 

in southwest monsoon precipitation. The International disaster databases estimated 268 

severe flooding events occurred in India from 1950 to 2015, resulting in casualties of 

69,000 persons, making 17 million people homeless, and impacting 825 million 

population. It is observed that a threefold increase in extreme precipitation events 

happened from 1950 to 2015. It showed that extreme rainfall events increased 

significantly during the time, and there is a need to understand the occurrence dynamicity 

and associated induced risks (Goyal et al.,2022).  

 

According to Patel et al., (2024), greenhouse gas (GHG) emissions significantly 

impact climate systems, and global climate models (GCMs) can replicate these effects to 

expect future conditions accurately. Using these models to simulate previous climates and 

predict future reactions to rising GHG emissions is widespread. The ability of GCMs to 

foretell future climate in response to varying scenarios of atmospheric GHG 

concentration is a significant benefit of these models. As part of the Coupled Model Inter-

comparison Project (CMIP), the public can access these GCMs. 

From the oldest to the most recent version, CMIP6, CMIP models have undergone 

significant development throughout the years to overcome difficulties. The GCMs of the 

CMIP6 differ from those of earlier CMIPs in that the most recent version offers a more 
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realistic portrayal of the physical processes that occur on earth. Besides this, the CMIP6 

model makes projections based on other scenarios that use the Shared Socioeconomic 

Pathways (SSPs). These revised climate projections consider recent socioeconomic 

developments, technological advancements, and other environmental factors (such as 

land use), which pave the way for the creation of new scenarios that can be used to more 

accurately evaluate the effects of various climate change policies. The CMIP6 lays a 

strong emphasis on the coordination of experiments to get a deeper comprehension of the 

processes that underlie the variability of climate (Patel et al.,2024). 

According to Leimbach et al., (2023), major socio-economic drivers of long-term 

dynamics in models assessing climate change are taken into account by scenario 

assumptions. Population and GDP projections associated with the Shared SSP scenarios 

represent such drivers. The scenario method is a common research tool to improve the 

understanding of complex interactions of natural systems and human activities. While 

scenarios, in general, provide “plausible descriptions of how the future might unfold”, the 

recently introduced SSP scenario framework was developed to facilitate analyses on the 

impacts of climate change, as well as their mitigation and adaptation.  

SSP1 (“Sustainability”) characterizes a world that makes progress towards 

sustainability, including the rapid development of low-income countries and relatively 

high urbanization rates. SSP2 as the “middle of the road Scenario” is meant to continue 

historical trends with a medium level of per capita GDP growth and urbanization. The 

narrative of SSP3 (“Regional Rivalry”) sketches a strongly fragmented world 

characterized by a high level of poverty, a high level of the rural population, and subject 

to high mitigation and adaptation challenges. SSP4 (“Inequality”) represents a highly 

unequal world with a strong divide of rich and poor people between countries as well as 

within countries. This divide additionally appears in urban areas that grow comparatively 

fast. Finally, SSP5 (“Fossil-fueled development”) characterizes a growth-oriented world 

with large technological progress and high urbanization rates. The energy supply relies 

largely on fossil fuel-based energy conversion technologies and therefore causes high 

mitigation challenges (Leimbach et al.,2023).  

The novelty of this research lies in its comprehensive evaluation of the spatio-

temporal variation of the selected meteorological variables of CMIP6 GCMs over the 

Indian region, which includes several unique aspects: a multi-faceted evaluation, regional 
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focus with unique climatic characteristics and practical implications of its findings that 

offer guidance for improving GCM performance in different climatic zones. 

To analyse the trend, the non-parametric test (Modified Mann-Kendall test) and 

Sen’s slope estimator were used. The modified Mann-Kendall test is a hypothesis test that 

determines whether a given sequence of data has a trend. It builds upon the original 

Mann-Kendall test but is more powerful as it can account for autocorrelations within the 

data. Sen's slope test is a method used to discover the nature of trends in univariate time 

series. It is a non-parametric method used for trend analysis and to identify trend 

magnitude. Pettitt's (1979) method is a rank-based nonparametric test for abrupt changes 

in a time series. The Pettitt test produces a supposed change-point, even when the trend is 

smooth, or when the abrupt change is smaller than the long-term smooth change. Wavelet 

coherence is a measure of the correlation between two signals. Wavelet coherence 

analysis is a method used to measure the cross-correlation between two signals as a 

function of both frequency and time. It provides insights into how two signals are related 

in the time-frequency plane. 

The present study intends to assess the effects of climate change on the 

development of a sustainable climatic environment and then developed ensemble climate 

projections under the shared SSPs using CMIP6 data. The main objectives of our study 

are enlisted below: 

1. Identification of suitable climatic model 

2. Analysis of trend of meteorological variables with MMK and Sen’s Slope test 

3. Identification of change point in upcoming time period for the meteorological variables 

4. Comparison of future time series of meteorological variable using Wavelet coherence 

This research can suggest strategies to increase the accuracy and reliability of 

future climate predictions. This study concentrates on CMIP6 precipitation and extreme 

temperature evaluation over India, the world's most influential nation in terms of climate 
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CHAPTER II 

REVIEW OF LITERATURE 

This chapter contains the review of the various research conducted in the relevant 

aspects with respect to the objectives of the study. The reviews are grouped under the 

following subheads. 

1. Collection and evaluation of climatic model data. 

2. Trend analysis of meteorological variables using Modified Mann-Kendall and Sen’s   

 Slope test. 

3. Detection of change point for the meteorological variable time series by Pettit test. 

4. Time series analysis of meteorological variables using Wavelet coherence.  

2.1 COLLECTION AND EVALUATION OF CLIMATIC MODEL DATA 

 Guhathakurta and Rajeevan (2008) conducted a comprehensive analysis of 

rainfall patterns across 36 meteorological subdivisions of India by reconstructing 

monthly, seasonal, and annual rainfall time series from 1901 to 2003. Utilizing a uniform 

network of 1,476 rain gauge stations, they ensured extensive spatial coverage and 

homogeneity in the data collected. Their linear trend analysis uncovered significant 

variances in long-term rainfall trends: notable decreases during the south-west monsoon 

in Jharkhand, Chhattisgarh, and Kerala, and increases in regions like Gangetic West 

Bengal and Konkan and Goa, among others. The study also highlighted shifts in the 

contribution of individual monsoon months to annual rainfall, particularly noting a 

decline in June, July, and September, and an increase in August. Through EOF(Empirical 

Orthogonal Function ) analysis, they elucidated the spatial distribution of rainfall, thus 

providing a robust framework for future climatological studies and water resource 

management in India. 

Mazzoglio et al.,(2022) had done a comprehensive analysis of the spatial and 

temporal trend of short-duration (1 to 24 h) annual maximum rainfall depths, derived 

from the Improved Italian—Rainfall Extreme Dataset(I2-RED). The investigation is 

conducted using time series of at least 30 years of data both at the national and regional 

level using the record-breaking analysis, the Mann-Kendall test, the Regional Kendall test 

and the Sen’s slope estimator. The results confirm that rainfall extremes of different 
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durations are not increasing uniformly over Italy and that separate tendencies emerge in 

different sectors, even at close distances.  

 Alemu et al.,(2024) undertook a comprehensive examination of the temporal and 

spatial patterns of meteorological and hydrological droughts within North Wollo, South 

Wollo, and the Oromia special zones of Ethiopia. Utilizing a variety of drought indices, 

including the Standardized Precipitation Index (SPI), Reconnaissance Drought Index 

(RDI), and Streamflow Drought Index (SDI) processed through DrinC software, the team 

analysed data collected from the Ethiopian Meteorology Institute and the Ministry of 

Water and Energy. Their historical analysis relied on thirty-two years of data from ten 

meteorological stations, while future projections employed (Representative Concentration 

Pathway) RCP 4.5 to downscale climate data and artificial neural networks for 

forecasting streamflow. Findings indicated that these zones experienced severe to extreme 

droughts with a high frequency, with notable episodes occurring almost biennially 

between 1984 and 1992, and predictions suggest an increase to five-year intervals in 

future drought occurrences. The severity and short intervals between these events 

highlight the urgent need for effective drought mitigation strategies and the 

implementation of an early warning system to safeguard the affected communities.  

 In another study by Dahiya et al.,(2024) they described that  Indian Summer 

Monsoon Rainfall (ISMR) plays a critical role in agriculture, thereby significantly 

affecting the economy of India. Yet, there is a large spread in the ISMR variability for 

future projections (by the end of 21st century) as simulated by coupled general circulation 

models. Gaining insight into the variations of the ISMR during warm periods could 

enhance our ability to understand ISMR variability in the future. To evaluate the ISMR 

mean state during the mid-Pliocene, they had used six available Coupled Model 

Intercomparison Project phase- 6 (CMIP-6) model simulations and their multi-model 

ensemble mean. Their analysis suggests that the ensemble of CMIP-6 models is better 

than individual models in capturing the ISM rainfall patterns and its characteristics for the 

historical period of 1914–2013. During the mid-Pliocene, they found  an increase in the 

June to September rainfall over most parts of India in comparison to the pre-industrial 

period with an increase of 34% in seasonal precipitation.  

 Petrova et al.,( 2024) in their study, delves into the complexities of climate change 

impacts on California's winter precipitation, utilizing projections from the most recent 
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Coupled Model Intercomparison Project Phase-6 (CMIP-6). This research crucially 

highlights California as a region of major climatic uncertainty, with historical model 

predictions oscillating between anticipations of both wetter and drier future scenarios. 

Petrova and colleagues analyse mid-century and end-century precipitation projections, 

revealing a substantial agreement among models that northern California will experience 

wetter conditions. In stark contrast, southern California remains a contentious area, with 

an almost equal split in model predictions between wetter and drier outcomes. Notably, 

the projected end-century precipitation changes range significantly, from a decrease of 

20% to an increase of 80% in CMIP-6, marking a shift towards generally wetter 

conditions and greater variability compared to CMIP-5. 

2.2 TREND ANALYSIS OF METEOROLOGICAL VARIABLES USING MODIFIED 

MANN-KENDALL AND SEN’S SLOPE TEST  

 Hu and Wang (2009) rigorously examined the hydrological dynamics of Taihu 

Lake, emphasizing the crucial role of its annual highest water level (Zm) in flood 

management within the Taihu Basin. The research extends from 1956 to 2000, applying 

Mann-Kendall and Spearman non-parametric tests to detect trends in areal precipitation 

and pan evaporation, alongside Morlet wavelet transformation to analyze fluctuation 

patterns. Their study also considered human influences such as land use changes and 

developments. A multifaceted approach using multi-linear regression models elucidates 

the relationship between Zm, precipitation, and evaporation in the critical 30-day period 

preceding the peak water level. Results indicated that a significant rise in Zm after 1980, 

attributed 83.6% to the increase of climatic factors while human activities account for 

16.4%. This delineation underscores the dominant influence of climate change over 

human interventions in shaping the hydrological characteristics of the lake. 

  Gocic and Trajkovic (2013) provides a comprehensive analysis of meteorological 

trends at twelve weather stations across Serbia from 1980 to 2010. Utilizing the non-

parametric Mann-Kendall and Sen’s slope methods, the research identifies both positive 

and negative trends in seven key meteorological variables. Seasonal and annual trends in 

minimum and maximum air temperatures show a clear upward trajectory, indicative of 

warming patterns. Meanwhile, relative humidity displays a significant decrease during 

the summer and autumn seasons. Vapor pressure trends upward in the spring, summer, 

and autumn, reflecting changes in atmospheric moisture content. Notably, precipitation 
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patterns do not exhibit significant trends in the summer and winter, suggesting variable 

rainfall over the study period. Cumulative sum charts and bootstrapping methods further 

validate these findings, marking abrupt changes and enhancing the robustness of trend 

detection. Overall, the study effectively highlights the dynamic nature of Serbia's climate 

over three decades, underscored by methodological rigor in trend analysis of 

meteorological data. 

 Yadav et al.,(2014) conducted a study focused on the quantitative estimation of 

rainfall and temperature trends, crucial for water resource management, flood forecasting, 

and climate change studies in Uttarakhand .Global Climate Models (GCMs) simulations 

predict an increase in extreme daily rainfall events globally and a decrease in overall 

regional rainfall due to greenhouse gas emissions .Previous studies have noted a decline 

in precipitation over the Himalayan region in the last two decades and significant inter-

annual variations in extreme rainfall events across India .Uttarakhand, a state in the 

Indian Himalayas heavily reliant on agriculture, highlights the necessity of continuous 

rainfall studies for effective water resource planning and management .The research 

employs the Mann-Kendall trend test, a widely used non-parametric test, to identify 

significant trends in precipitation and temperature for the periods 1971-2011 and 1971-

2007 in Uttarakhand .The study aims to analyze the changing trends of rainfall and 

temperature across all thirteen districts of Uttarakhand, utilizing daily rainfall data from 

1971 to 2011 and temperature data from 1971 to 2007 

 Rahman and Dawood (2016) research evaluated the temperature trends in the 

eastern Hindu Kush region of north Pakistan using the Mann–Kendall trend model 

(MKTM) and Sen’s slope estimator (SSE). Data sourced from the Pakistan 

Meteorological Department for seven meteorological stations facilitated the investigation 

into climate change impacts on regional temperature patterns. The study identifies an 

increasing trend in mean maximum temperatures at Chitral, Dir, and Saidu Sharif 

stations, contrasting with decreasing trends in mean minimum temperatures at Saidu 

Sharif and Timergara stations. These trends suggest significant spatio-temporal variability 

in temperature, which is attributed to broader climate change influences affecting the 

region. The use of MKTM and SSE provides robust analytical frameworks to discern and 

quantify these trends, offering insights into the dynamic and complex interactions 

between climate change and regional meteorological patterns, thereby emphasizing the 

critical need for targeted climate adaptation strategies in the area. 
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 Phuong et al.,(2020)study investigated hydro-meteorological trends in the Vu Gia 

Thu Bon watershed from 1979 to 2014. By combining the Innovative-Şen trend method 

with classical Mann-Kendall tests, the research identifies significant increasing trends in 

annual rainfall, extreme temperatures, relative humidity, and stream flow. Conversely, 

evapotranspiration and sunshine duration exhibit opposing trends. Notably, maximum and 

minimum temperature warming trends are 0.019°C/year and 0.024°C/year, respectively. 

The study underscores the applicability of the Innovative-Şen approach for trend 

identification. These findings have implications for climate-induced risks and water 

resource management in the study area during the climate emergency 

Sa’adi et al.,(2023) in their  study explored the spatio-temporal trends of extreme 

rainfall and temperature in Sarawak peatland over a 68-year period (1948–2016) using 

the Princeton gridded datasets and a Modified Mann-Kendall (MMK) test. This test 

enhances the standard Mann-Kendall (MK) method by addressing biases due to serial 

autocorrelation and scaling effects inherent in climate data, thus providing a more 

accurate trend analysis of extreme climate events influenced by large-scale climate 

phenomena. Their findings, processed through the R-based RClimDex, indicated 

significant, albeit spatially varied, increases in extreme rainfall during the Southwest 

monsoon compared to the Northeast monsoon. Additionally, variations in diurnal 

temperature range were observed, with an expected decrease during both monsoons as 

minimum temperatures rose more sharply than maximum temperatures. The study 

highlights the critical impacts of extreme weather conditions on the peatland’s dual role 

as a carbon sink and source, underlining the urgency of addressing climate change effects 

in this sensitive ecosystem. 

 Fattah et al.,(2024) investigates the variability and trends in rainfall patterns across 

South Asian capitals, examining their implications for groundwater resource management 

amid climate change and human activities. Utilizing Mann-Kendal tests, Innovative 

Trend Analysis, and Continuous Wavelet Coherence, the research identifies consistent 

trend patterns in rainfall across various timescales. The study employs Gumbel 

distribution for Intensity-Depth-Frequency(I-D-F) analysis to quantify rainfall depth and 

intensity over durations ranging from 5 minutes to 24 hours across multiple return 

periods. Results indicate significant spatial variability, with Kotte experiencing the 

highest annual rainfall and Kabul the least. Most cities show a positive annual rainfall 

trend, with monthly and seasonal variations. The findings highlight the potential impacts 
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of these trends on groundwater resources and are critical for developing strategies within 

the water-energy-food nexus, informing water policy, and addressing the social 

dimensions of water resource management in a changing climate. 

2.3 DETECTION OF CHANGE POINT FOR THE METEOROLOGICAL VARIABLE 

TIME SERIES BY PETTIT TEST 

Rougé et al.,(2013) addressed the challenge of detecting change point in  

hydrological time series, such as shifts in precipitation and streamflow, which are critical 

for water resources management. Authors critiqued traditional methods for their inability 

to distinguish between gradual and abrupt changes effectively. A novel method was 

proposed, combining the Mann–Kendall rank correlations with Pettitt statistics to identify 

the nature of shifts in hydro climatic data. Validated through Monte-Carlo simulations, 

this approach demonstrated robustness irrespective of data length. The method was 

applied to analyse hydroclimatic changes across the United States from 1910 to 2009, 

using data from 1217 USHCN stations. 

Li et al.,(2014) examined change point detection in hydrological data consistency. 

Initially, the Pettitt test was used to detect change points for annual rainfall and runoff 

time series in six selected sub-watersheds of the Luanhe river basin in Northeast China. 

Subsequently, they  introduced a method to detect change points based on the law of 

mutual change of quality and quantity in variable fuzzy sets. The mean of the time series 

served as the assessment index, similar to other change point detection methods. They  

defined the 95% and 5% quantiles of the time series as the supremum and infimum, 

respectively. A reference period (e.g., the first 10 points of the time series) was selected as 

the stationary period. After the reference period, they  examined the mean value of the 

time series point by point. This method was applied to the six sub-watersheds of the 

Luanhe river basin. The results of the two methods indicated that most annual rainfall 

time series did not exhibit change points, while some annual runoff time series showed 

change points in 1979 or 1981. A comparison of the two methods revealed that the Pettitt 

test provided a reference for the variable fuzzy sets method, but the latter yielded more 

reasonable results than the Pettitt test in this study. Furthermore, this method can be 

applied to other natural time series. 

Palaniswami and Muthiah (2018) conducted a study that focused on analysing the 

variability of rainfall and temperature to understand the hydrological environment in a 
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river basin in northern Tamil Nadu. Using Mann-Kendall and Sen’s slope tests, the 

researchers examined temperature trends on monthly, seasonal, and annual scales, along 

with annual maximum daily rainfall and other rainfall metrics. Additionally, a change 

point detection test was conducted for annual maximum and minimum, mean 

temperatures, and annual precipitation series. The findings indicated significant rising 

trends in all evaluated temperature parameters across different time scales. Particularly 

notable were the more pronounced temperature increases during the north-east and south-

west monsoons compared to the summer and winter seasons across various rain gauge 

stations. Change points in maximum and minimum temperatures were identified in 

specific years, confirming shifts in climate patterns. This comprehensive analysis sheds 

light on significant climatic changes within the region, emphasizing the need for targeted 

climate adaptation strategies.  

Animashaun et al.,(2020 in their  study investigated the spatio-temporal 

variability of rainfall across 33 sub-basins in the Niger Central Hydrological Area 

(NCHA), Nigeria, spanning 105 years (1911–2015). Utilizing CRU data (CRU_TS 4.01), 

they employed rainfall variability indices, precipitation concentration indices, and linear 

regression models (LRMs). Change point detection using nonparametric Mann-Kendall 

(MK) tests, Standard Normal Homogeneity Test (NSHT), and Pettitt’s test (PT) revealed 

significant trends. The wettest and driest years were 1983 and 1911, respectively, while 

the wettest and driest decades were 1921–1930 and 1981–1990. LRM indicated 

decreasing mean annual rainfall, early rainy season, and main rainy season. NSHT and 

PT identified 1969 as the probable change point.   

Getahun et al.,(2021) examined climatic trends and change-points in the Awash 

river basin (ARB) from 1986 to 2016, utilizing data from 29 meteorological stations. It 

applied Pettit's, the von Neumann ratio (VNR), Buishand's range (BR), and standard 

normal homogeneity (SNH) tests for change-point detection, alongside the Mann-Kendall 

(MK) test for trend analysis on rainfall and temperature. The research revealed significant 

increasing trends in both annual and seasonal temperatures, with notable temperature 

change-points identified in 2001 for the annual and major rainy seasons, and 1997 for the 

minor rainy season. Conversely, rainfall showed a significant decreasing trend, 

particularly in the downstream parts of the ARB, with a shift and high variability linked 

to El Niño and La Niña events. The mRS rainfall exhibited a change-point in 1998, 

followed by a mean annual decrease of 52.5 mm. The study underscored the critical need 
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for integrated water management and early detection of El Niño events to mitigate 

potential negative impacts on the basin's agriculture-dependent communities. 

Kumar et al.,(2023) , conducted research in the Garo Hills region of Northeast 

India, analysed climatic changes and their impacts on forest cover loss and CO2 

emissions from 1984 to 2019. Using secondary data, the study employed Mann-Kendall's 

and Sen's slope tests to assess trends in climatic parameters such as precipitation, 

temperatures, and relative humidity, while Pettitt’s test identified change points. The 

findings revealed a general decrease in precipitation and an increase in maximum 

temperatures across most time frames. Minimum temperatures showed a decreasing 

trend, and relative humidity increased in all seasons except the monsoon. The study also 

explored correlations between these climatic factors and environmental changes using 

Pearson’s correlation and regression analysis. It found significant positive correlations 

between maximum temperature and both forest cover loss and CO2 emissions, while 

minimum temperature had negative correlations with these variables. These insights are 

crucial for developing targeted climate adaptation and mitigation strategies in the region. 

2.4 TIME SERIES ANALYSIS OF METEOROLOGICAL VARIABLES USING 

WAVELET COHERENCE 

 Araghi et al.,(2016) explored the relationships between precipitation in Iran and 

three major climatic teleconnection indices—Arctic Oscillation (AO), North Atlantic 

Oscillation (NAO), and Southern Oscillation Index (SOI)—over the period from 1960 to 

2014. Utilizing wavelet coherence (WCO) at 30 synoptic stations, the research identified 

that SOI had the strongest influence on precipitation patterns across Iran, while AO and 

NAO also exhibited significant effects. The findings highlighted the dominant period of 

influence for AO at most stations as being 32 months or more, whereas for NAO, it 

extended to 64 months or more. SOI impacted most of the country on a shorter scale of 

less than 64 months, except in the north-western regions where its influence lasted longer. 

The phase relationships between these indices and precipitation varied, often showing 

random patterns, with long-term SOI showing an anti-phase relationship at many stations. 

The study underscored the effectiveness of WCO as a method for analyzing time-

frequency relationships in climatic and hydrological studies. 

Bonkaney et al.,(2019) employed Wavelet Transform Coherence (WTC) and 

phase analysis to investigate the relationship between daily electricity demand (DED) and 
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various weather variables, including temperature, relative humidity, wind speed, and 

radiation. The analysis revealed that while DED exhibited both seasonal fluctuations and 

an upward trend, the weather variables mainly showed seasonal variations. The 

application of WTC and phase analysis enabled the identification of periods where 

significant correlations existed between DED and specific weather variables. Notably, a 

strong seasonal interdependence was found between air temperature and DED within 

256-512 days and 128-256 days periods. A significant correlation was also observed 

between humidity and DED within a 256-512 day period, achieving an average coherence 

of 0.8. However, correlations between DED and both radiation and wind speed were 

weak, with average coherence values below 0.5. These findings provide valuable insights 

for power planners to enhance forecasting and planning of electricity demand based on 

weather conditions. 

Li et al.,(2019)  conducted study in a karst depression in south-west China, 

researchers investigated the relationships between temporal soil water content (SWC) and 

meteorological factors over a period of 242 days. Utilizing time domain reflectometry, 

SWC was measured at five different soil depths across two types of land use: farmland 

and grassland. The study employed wavelet coherency analysis to assess the scale-

dependent influences on SWC, recognizing that traditional Pearson’s correlation analysis 

might not capture these complex relationships effectively. The results highlighted that 

precipitation and land use were the primary drivers of SWC dynamics, with distinct 

patterns observed between farmland and grassland. Wavelet coherency analysis revealed 

both positive and negative correlations between SWC and meteorological factors, varying 

significantly across scales. This approach also demonstrated that soil depth influenced 

SWC dynamics more prominently at larger scales compared to land use. The study 

underscored the potential of wavelet coherency analysis to enhance soil moisture 

prediction by identifying scale-specific dependencies. 

Nourani et al.,( 2019) work explored the influence of hydro-climatological 

variables on water level fluctuations in Urmia Lake in Iran and Van Lake in Turkey, 

employing wavelet transform coherence (WTC) to analyze the complex interactions. The 

study focused on the hydrological time series' higher order moments to understand the 

complexity and variability of water levels in these two geographically proximate yet 

ecologically distinct saline lakes. The analysis revealed that runoff exhibited the strongest 

coherency with water level fluctuations, achieving coherence values between 0.9 and 1.0. 
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Despite similar climatic conditions, Urmia Lake displayed a concerning negative trend in 

water levels over the past 15 years, highlighting its critical ecological status. The research 

emphasized the importance of local multi-scale correlations and phase relationships, 

offering insights into how these lakes respond to varying hydroclimatological inputs. This 

comparison not only pinpointed the critical conditions of Urmia Lake but also 

underscored the need for regional water management strategies to mitigate adverse 

trends. 

Das et al.,(2020) in their  study, analysed the relationships between monthly 

precipitation patterns in six meteorologically homogeneous regions of India and eight 

large-scale climatic oscillations from 1951 to 2015. The climatic indices examined 

included the Indian Ocean Dipole (IOD), Sea Surface Temperature (SST), Multivariate 

ENSO Index (MEI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation 

(PDO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and the Indian 

Summer Monsoon Index (ISMI). Utilizing wavelet and global coherence analyses, the 

study found that while all climatic indices significantly affected precipitation, ISMI had 

the most pronounced impact, especially on an intra-annual scale across Central Northeast, 

Peninsular, and West Central India. The effective period for IOD spanned 8 to 16 months, 

and for ENSO-related indices like SST, SOI, and MEI, it was between 20 and 54 months. 

The study demonstrated the efficacy of wavelet and global coherence methods in 

revealing complex, scale-specific relationships between large-scale climatic oscillations 

and regional precipitation, offering valuable insights for water resource management and 

hydrological forecasting. 

Zhou et al.,(2022)  analysed in  the Pearl river basin, long-term data on the 

Normalized Difference Vegetation Index (NDVI) and Solar-induced chlorophyll 

fluorescence (SIF) to understand how vegetation dynamics respond to meteorological 

drought. From 2001 to 2019, vegetation showed an increasing trend, with SIF gains 

outpacing NDVI. Vegetation response times varied between indices and vegetation types, 

being quicker in woody savannas and slower in evergreen broadleaf forests. The study 

revealed stronger correlations between SIF and drought than NDVI. Large-scale climate 

oscillations such as ENSO, PDO, and sunspot activities were identified as significant 

drivers of these interactions, with PDO having the most pronounced impact. 
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CHAPTER III 

MATERIALS AND METHODS 

In this study, three climatic variables (precipitation, max and minimum 

temperature) were considered for the analysis. Future projected climatic variables were 

collected from 13 different CMIP6 climatic models under four SSPs scenarios: two are 

from  (SSP1–2.6 and SSP5–8.5 Wm-2), one from pessimistic (SSP3–7.0 Wm-2) and one 

based on historical trend (SSP2–4.5 Wm-2). Trend analysis was done using Modified 

Mann Kendall test and Sen’s slope test. Change point detection was done using the Pettit 

test and the dependence of the meteorological variables between each other was analysed 

using the wavelet coherence plot. 

3.1 STUDY AREA DESCRIPTION 

India is situated north of the equator between 8°4' north (the mainland) to 37°6' 

north latitude and 68°7' east to 97°25' east longitude. It is the seventh-largest country in 

the world, with a total area of 3,287,263 square kilometres (1,269,219 sq mi). India 

accounts 2.42% of the total world land area. In the 21st century, the global environment 

faces significant threats due to climate change, ranging from floods and droughts to heat 

waves and other extreme weather events. In recent decades, India has experienced severe 

flooding and prolonged droughts, compounding challenges related to livelihoods, public 

health, and population displacement. The availability of precise and robust climate 

change information is paramount in addressing and mitigating the adverse impacts on a 

region's environment and its communities. 

According to Singh (2024), Koppen’s classification is based on the empirical 

relationship between climate and vegetation. The classification provides an efficient way 

to describe climatic conditions defined by precipitation and temperature and their 

seasonality. The classification is widely used to map long term climate and associated 

ecological conditions. If data on temperature, precipitation and seasonality is available, it 

is easy to code the climate type. Selected cities with their corresponding Koppen climatic 

zones are enlisted in table 3.1 

 

 

 

https://www.bing.com/ck/a?!&&p=7ffc23c0d993eb3fJmltdHM9MTcxNTA0MDAwMCZpZ3VpZD0xMTdlMDhhYS1iOTVlLTY3YTEtMjM5ZC0xYjFmYjhiNDY2ODgmaW5zaWQ9NTc0NA&ptn=3&ver=2&hsh=3&fclid=117e08aa-b95e-67a1-239d-1b1fb8b46688&u=a1L3NlYXJjaD9xPUluZGlhJTIwd2lraXBlZGlhJmZvcm09V0lLSVJF&ntb=1
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https://www.bing.com/ck/a?!&&p=bf9cc45db3d3b7e8JmltdHM9MTcxNTA0MDAwMCZpZ3VpZD0xMTdlMDhhYS1iOTVlLTY3YTEtMjM5ZC0xYjFmYjhiNDY2ODgmaW5zaWQ9NTc0Ng&ptn=3&ver=2&hsh=3&fclid=117e08aa-b95e-67a1-239d-1b1fb8b46688&u=a1L3NlYXJjaD9xPUxpc3QlMjBvZiUyMGNvdW50cmllcyUyMGFuZCUyMG91dGx5aW5nJTIwdGVycml0b3JpZXMlMjBieSUyMHRvdGFsJTIwYXJlYSUyMHdpa2lwZWRpYSZmb3JtPVdJS0lSRQ&ntb=1
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Climate Area Type Location 

Amw 
Monsoon with a short 

dry season 

The west coast of India 

south of Goa 

As 
Monsoon with dry 

summer 

Coromandel coast of 

Tamil Nadu 

Aw Tropical savannah 

Most of the Peninsular 

plateaus, south of the 

Tropic of Cancer 

BShw Semi-arid steppe climate 

North-western Gujarat, 

some parts of western 

Rajasthan, and Punjab 

BWhw Hot Desert 
Extreme western 

Rajasthan 

Cwg 
Monsoon with dry 

winter 

Ganga Plain, eastern 

Rajasthan, northern 

Madhya Pradesh, most of 

North-east India 

Dfc 
Cold humid winter with 

short summer 
Arunachal Pradesh 

E Polar type 

Jammu and Kashmir, 

Himachal 

Pradesh, and Uttarakhand 

Table 3.1 List of selected cities with their corresponding Koppen climatic zone 

 

Table 1: List of CMIP6 models used in this study along with country of origin 

DDDDD 
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Fig. 3.1 Koppen’s climatic classification -India  
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3.2 DATA COLLECTION AND SOFTWARE USED 

In this study, three climatic variables (precipitation, max and minimum 

temperature) were considered for the analysis. Future projected climatic variables are 

collected from 13 different CMIP6 climatic model (Table 1) under four SSPs scenarios: 

two are from optimistic (SSP1–2.6 and SSP5–8.5 Wm-2) , one from pessimistic (SSP3–

7.0 Wm-2) and one based on historical trend (SSP2–4.5 Wm-2).  Three climatic variables 

at daily timescale and 0.25° × 0.25° fine spatial resolution in bias corrected format is 

downloaded from zenodo platform (Mishra et al., 2020). Data source with spatial 

resolution and timespan are enlisted in the table 3.2 

Table 3.2 Data source with spatial resolution and timespan 

 

Besides, for the historic climatic variable analysis, observed historical daily 

rainfall data (1950–2022) at 0.25° × 0.25° spatial resolution, maximum and minimum 

temperature at 1° × 1° at spatial resolution at daily timescale obtained from the India 

Meteorological Department (IMD), Pune (https:// imdpu ne. gov. in/ Clim_ Pred_ LRF_ 

New/ Grided_ Data_ Download. html) were considered. To have uniform grid point for 

effective spatial analysis, the past observed grid data was regridded for future grid point 

DATA 

 

SOURCE 

 

TIMESPAN SPATIAL 

RESOLUTION 

Historic 

precipitation 

 

IMD,Pune 

 

1951-2022 

 

0.25° × 0.25° 

Historic maximum 

temperature 

 

IMD,Pune 

 

1951-2022 

 

1° × 1°  

 

Historic minimum 

temperature 

 

IMD,Pune 

 

1951-2022 

 

1° × 1°  

 

Future precipitation 

 

Mishra et al., 2020 

(Zenodo) 

 

2024-2100 

 

0.25° × 0.25° 

Future maximum 

temperature  

 

Mishra et al., 2020 

(Zenodo) 

 

2024-2100 

 

0.25° × 0.25° 

Future minimum 

temperature  

 

Mishra et al., 2020 

(Zenodo) 

 

2024-2100 

 

0.25° × 0.25° 
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of CMIP6 model, using Inverse Distance Weightage (IDW) spatial interpolation 

technique, one of the effective re gridding method (Das et al., 2016).  

Regarding individual model concern, there is uncertainty and discrepancies in 

model performance, which can be attributed to the variations in dataset preparation and 

their resolution (Saharwardi and Kumar, 2021). To reduce uncertainty in individual model 

and to have reliable climatic projection, ensemble approach was used for the 13 CMIP6 

models, that ensemble approach has shown good performance over individual model as 

reported by earlier researchers (Knutti et al.,2010; Ahmed et al., 2019 and Saharwardi and 

Kumar, 2021). CMIP6 models used in this study along with country of origin and spatial 

resolution are provided in table 3.2 

Table 3.3 List of CMIP6 models used in this study along with country of origin 

No Models 
Spatial resolution 

Longitude x Latitude 
Country 

1.  ACCESS-CM2 1.9° x 1.3° Australia 

2.  ACCESS-ESM1-5 1.9° x 1.2° Australia 

3.  BCC-CSM2-MR 1.1° x 1.1° China 

4.  CanESM5 2.8° x 2.8° Canada 

5.  EC-Earth3 0.7° x 0.7° Europe 

6.  EC-Earth3-Veg 0.7° x 0.7° Europe 

7.  INM-CM4-8 2° x 1.5° Russia 

8.  INM-CM5-0 2° x 1.5° Russia 

9.  MPI-ESM1-2-HR 0.9° x 0.9° Germany 

10.  MPI-ESM1-2-LR 1.9° x 1.9° Germany 

11.  MRI-ESM2-0 1.1° x 1.1° Japan 

12.  NorESM2-LM 2.5° x 1.9° Norway 

13.  NorESM2-MM 2.5° x 1.9° Norway 

 

The softwares used for the study are enlisted below ; 

a. ArcGIS - The results of trend analysis and the change point analysis was projected 

as maps in ArcGIS (Shown in figure 3.2) 

b. MATLAB - The complete study was done by running the codes in MATLAB 

(Shown in figure 3.3) 

 

 

  

Fig. 3.2 ArcGIS Fig. 3.3 MATLAB 
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3.3 IDENTIFICATION OF SUITABLE CLIMATIC MODEL 

 The most suitable climatic model after the ensembled data for the eight Koppen’s 

climatic  regions was identified through this objective. Flow chart showing the procedure 

for the Identification of suitable climatic model is shown in figure 3.4. 

 

 

Conversion of past daily data to monthly data was done separately for all the 13 

models and then the ensembled monthly data was computed. According to the Koppen 

climatic classification, points corresponding to the selected 8 stations were selected for 13 

models as well as the ensembled data  and Correlation, Root Mean Square Error (RMSE) 

and Mean Bias Error were computed. 

Precipitation daily raw data of 4641 stations of 13 climatic model was taken from 

a time period of 1951 to 2014. The daily raw data was converted into monthly data using 

MATLAB. Past original data of monthly precipitation from time period of 1951 to 2014 

was also taken. An excel sheet was created consisting of data from eight  Koppen  

climatic classified stations of each climatic model from the monthly data of models. 

Another excel sheet was also created  consisting of data only taken  from Koppen’s 

climatic regions out of 4641 stations  from  monthly historic data . Ensembled monthly 

was obtained from the above 13 models data. Another excel was created for comparing 

the past original precipitation data with the past precipitation data of 13 models as well as 

ensembled data. Comparison was done mainly using Correlation coefficient, Root mean 

square error(RMSE) and Mean bias error which are obtained using MATLAB. For each 

Fig. 3.4 Flow chart for the Identification of suitable climatic model 
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station 13 models as well as ensembled data’s correlation coefficient, RMSE, mean bias 

error value were obtained  and by comparing these values the best model suited for each 

station was found out . Also the relevance of using ensembled data compared with the 13 

models data was understood. 

 

 

Correlation coefficient (a value between negative1 and positive1) tells how 

strongly two variables are related to each other. A correlation coefficient of positive1 

indicates a perfect positive correlation. As variable x increases, variable y  increases. As 

variable x decreases, variable y decreases. A correlation coefficient of negative1 indicates 

a perfect negative correlation. As variable x increases, variable z decreases. As variable x 

decreases, variable z increases. A correlation coefficient near 0 indicates no correlation.  

𝒓 =
𝒏(∑ 𝒙𝒚) − (∑ 𝒙)(∑ 𝒚)

√[𝒏 ∑ 𝒙𝟐 − (∑ 𝒙)𝟐][𝒏 ∑ 𝒚𝟐 − (∑ 𝒚)𝟐]
 

Where r is the Correlation coefficient, n is the number in the given dataset, x,y 

will be first and second variable in the context. 

 

Root mean square error (RMSE) is a metric that tells us the average distance 

between the predicted values from the model and the actual values in the dataset. The 

lower the RMSE, the better a given model is able to fit a dataset. 

𝑹𝑴𝑺𝑬 = √
∑ (𝑿𝒐𝒃𝒔,𝒊 − 𝑿𝒎𝒐𝒅𝒆𝒍,𝒊)𝟐𝒏

𝒊=𝟏

𝟐
 

Where 𝑋(𝑜𝑏𝑠,𝑖)  is the observation value and 𝑋(𝑚𝑜𝑑𝑒𝑙,𝑖)is the forecast value. n is 

the number of observations. 

 

 

3.3.1 Analysis of performance to identify the best model 

 

 

3.3.1.1  Correlation coefficient 

3.3.1.2 Root mean square error (RMSE) 



  

25 
 

 

Mean bias error can be simply estimated as the difference between the means of 

predictions and observations. The closer to zero the better. Negative values indicate 

underestimation. Positive values indicate general overestimation. 

𝑴𝑩𝑬 =
𝟏

𝒏
∑(𝑷𝒊 − 𝑶𝒊)

𝒏

𝒊=𝟏

 

Where Oi is the observation value and Pi is the forecast value. 

Correlation coefficient was computed using Microsoft Excel whereas the RMSE 

and the Mean bias error were computed using the Agrimetsoft application. 

3.4 TREND ANALYSIS OF METEOROLOGICAL VARIABLES USING MODIFIED 

MANN-KENDALL AND SEN’S SLOPE TEST FOR THE INDIA 

 Using MMK and Sen’s Slope tests, trends in the historic as well as future 

meteriological data were analysed. Flow chart showing the procedure for the trend 

analysis of meteorological variables is shown in figure 3.5. 

 

After the conversion of daily data to monthly data and then to the seasonal data,  

the ensembled seasonal averages were computed for  the nominal  seasons    winter (i.e., 

December–January– February), summer (March–April–May), monsoon (June–July–

August-September) and autumn (October–November) for the  13 models. The dataset was 

3.3.1.3 Mean bias error 

Fig. 3.5 Flow chart for the trend analysis of meteorological variables 

Q 
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then grouped as near (2024- 2060) and far future (2061- 2100). Using the MATLAB 

codes, MMK  and SSE tests were done for all the 4 SSP scenarios and then the z values 

(MMK) and the Sen’s slope values were  projected in ArcGIS. 

3.4.1 Analysis of trends using MMK and SSE 

 To study the trend of meteorological variables, non-parametric trend analysis 

tests such as Modified Mann–Kendall (MMK) test and Theil–Sen’s slope  estimator was 

used in this study.  Hamed and Rao (1998) developed MMK after doing  variance 

correction in the traditional MK test that was originally developed by Mann (1945) and 

Kendall (1975)  to address the problem of autocorrelation in the time series data. MK 

used to detect the presence of a monotonic trend in a time series dataset. MMK detects 

the presence of trend. Sen’s slope test was used to quantify trends in terms of numerical 

value. This numerical value helps in quantifying and understanding the trend present in 

the data, whether it's increasing, decreasing, or remaining stable over time. Code used to 

run SSE was provided in appendix II. 

 The Mann–Kendall test statistics S is calculated using the formula given as 

𝐒 = ∑ ∑ 𝒔𝒈𝒏(𝒙𝒋 − 𝒙𝒊)

𝑵

𝒋=𝒊+𝟏

𝑵−𝟏

𝒊=𝟏

 

 where xj and xi are the annual data values in year j and i, respectively, j>i and N is the 

number of data points. 

 Modified Mann–Kendall test Significant values of ρk have only been used 

calculating the variance correlation factor n/𝑛𝑠
∗, as the variance of S is underestimated for 

the positively autocorrelated data: 

𝒏

𝒏𝒔
∗

= 𝟏 +
𝟐

𝒏(𝒏 − 𝟏)(𝒏 − 𝟐)
× ∑(𝒏 − 𝒌)(𝒏 − 𝒌 − 𝟏)(𝒏 − 𝒌 − 𝟐)𝝆𝒌

𝒏−𝟏

𝒌=𝟏

 

where n represents the actual number of observations,𝑛𝑠
∗ is represented as an effective 

number of observations to account for the autocorrelation in the data and ρk is considered 

as an autocorrelation function of the ranks of the observations. 
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 The N values of Qi are ranked from smallest to largest and the median of slope 

or Sen’s slope estimator is computed as: 

𝑸𝒎𝒆𝒅 = {

𝐐
[
(𝐍+𝟏)

𝟐 ] 
, 𝐢𝐟𝐍 𝐢𝐬 𝐨𝐝𝐝

𝐐[𝐍/𝟐] + 𝐐[(𝐍+𝟐)/𝟐]

𝟐
, 𝐢𝐟 𝐍 𝐢𝐬 𝐞𝐯𝐞𝐧

 

 

3.5 IDENTIFICATION OF CHANGE POINT IN UPCOMING TIME PERIOD FOR THE 

METEOROLOGICAL VARIABLES 

 After the conversion of daily data to monthly data and then to the seasonal data,  

ensembled seasonal averages were calculated for the nominal  seasons   winter (i.e., 

December–January– February), summer (March–April–May), monsoon (June–July–

August-September) and autumn (October–November) of 13 models. Using the MATLAB 

codes, Pettit test was done for all the 4 SSP scenarios and then the change points were  

projected in ArcGis. Flow chart showing the procedure for the identification of change 

point in upcoming time period for the meteorological variables are shown in figure 3.6. 

 

 

 

 The Pettit change point test is a non-parametric statistical test that can be used to 

identify a single change point in a time series. It is essential in the analysis of climate and 

hydrological data to detect a shift or an abrupt change. According to Smadi and 

Zghoul(2005) test was formulated by Pettit and can be written as follows: 

𝑼𝒌 = 𝟐 ∑ 𝑴𝒊

𝒌

𝒊=𝟏

− 𝒌(𝒏 + 𝟏) 

where Mi is the rank of the i-th observation when the values X1, X2,…, Xn in the series 

are arranged in ascending order. Code used to run pettit test  was provided in appendix II 

Fig. 3.6 Flow chart for the identification of change point in upcoming time 

period for     the  meteorological variables 
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3.6 COMPARISON OF FUTURE TIME SERIES OF METEOROLOGICAL VARIABLES 

USING WAVELET COHERENCE 

 The wavelet coherence plot is a valuable technique for investigating the 

correlation between two signals in both time and meteorological parameters. It provides 

insights into the dynamic relationships between signals, revealing areas of strong 

correlation or no correlation. Wavelet coherence is useful for analyzing nonstationary 

signals. The authors intend to observe how correlations vary over certain frequencies and 

time intervals through wavelet coherence. The wavelet coherence plot brings out a figure 

with time on the x-axis and frequency of period value on the y-axis. The lower frequency 

values give higher scale values or periods of co-movement. On the right-hand side, the 

bar indicates the power of the coherence. The yellow colour means higher power, and the 

blue colour means lower coherence between the terms. The thin, faded section around the 

edges indicates the cone of influence area. It is due to the low efficiency of the results 

obtained by the wavelet transform at the edges of the time series data. The areas that are 

contoured with black lines indicate a 5% significance level against noise. The blue 

regions represent no time or frequency dependence at the 5% significance level. The 

arrows indicate the relationship between two time series in phase. Arrows pointing to the 

right mean positive dependence, and arrows pointing to the left mean a negative 

relationship. If the arrow is pointing up, the first series is leading the second in the 

analysis, and the down-pointing arrows indicate the second series as the leading item in 

that time and frequency region. Here, the horizontal axis and the vertical axis represent 

frequency in days and time, respectively. Wavelet coherence is a measure of the 

correlation between two signals. The wavelet coherence of two time series x and y is: 

│𝑺(𝑪𝒙(𝒂, 𝒃)𝑪𝒚
∗ (𝒂, 𝒃))│𝟐

𝑺(│𝑪𝒙(𝒂, 𝒃)│𝟐). 𝑺(│𝑪𝒚(𝒂, 𝒃)│𝟐)
 

where Cx(a,b) and Cy(a,b) denote the continuous wavelet transforms of x and y at 

scales a and positions b. The superscript * is the complex conjugate and S is a smoothing 

operator in time and scale. 

For real-valued time series, the wavelet coherence is real valued if you use a real-valued 

analyzing wavelet, and complex valued if you use a complex-valued analyzing wavelet. 
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Flow chart showing the procedure for the comparison of future time series of 

meteorological variables using wavelet coherence is shown in figure 3.7. 

 

 

Fig. 3.7 Flow chart for the comparison of future time series of meteorological 

variables using wavelet coherence 

 After the conversion of daily data to monthly data and then  ensembled monthly 

averages of 13 models were calculated.. The data corresponding to the 8 climatic regions 

according to the Koppen’s climatic classification was extracted. Using the MATLAB 

codes, wavelet coherence plots were generated for all the 4 SSP scenarios. 

 Historical ( 1951- 2022) and Future (2024- 2100) data of three meteorological  

variables ( Precipitation, Maximum temperature and Minimum temperature) as per the  

the 13 Global Climatic Models (GCMs) under the CMIP6 were analysed using MMK, 

Sen’s slope test (trend) and the Petit test (change point analysis). Considering the 

Koppen’s climatic classification, most suitable model as well as the correlation between 

temperature and precipitation (Wavelet coherence) were also investigated. 
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Results and discussion 
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CHAPTER IV  

RESULTS AND DISCUSSION 

 The results of identification of suitable climatic model, trend analysis as well as the 

correlation plots are presented in this chapter. 

4.1 IDENTIFICATION OF SUITABLE CLIMATIC MODEL 

 Suitable climatic model for each region was identified on the basis of values 

of correlation coefficient, root mean square error and mean bias error. In the comparison 

of 13 models as well as the ensembled data among eight stations, ensemble data is found 

to be the best. Correlation coefficient of positive 1 indicates a perfect positive correlation 

and negative 1 indicates a perfect negative correlation. The lower the RMSE, the better a 

given model is able to fit a dataset. Mean bias error can be simply estimated as the 

difference between the means of predictions and observations. The closer the mean bias 

error to zero the better is the model. Negative values indicate underestimation. Positive 

values indicate general overestimation. Result of the model analysis for the region Amw 

is given in the table 4.1. Similar tables corresponding to the remaining seven regions are 

given in appendix I. 

 

 

MODELS 

                              

                                          Amw 
 

CORRELATION 

COEFFICIENT 

RMSE MEAN BIAS 

ERROR 

ACCESS-CM2 .22 10.98 -2.24 

ACCESS-ESM1-5 .66 11.30 -2.22 

BCC-CSM2-MR .81 8.08 -2.20 

CanESM5 .62 10.97 -2.23 

EC-Earth3 .67 10.68 -2.203 

EC-Earth3-Veg .69 10.27 -2.21 

INM-CM4-8 .71 9.75 -2.19 

Table 4.1 Result of the model analysis for the region Amw 
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 In the first region Amw( Maharashtra) BCC-CSM2-MR model turn out to be  the 

best comparing with other models . BCC-CSM2-MR model RMSE value is 8.08 which is 

the lowest value among rest,correlation value is .81 shows the highest positive 

correlation,mean bias error  is -2.02. Table 4.2 shows the suitable model for different 

climatic regions. 

 In the second  region As(Tamilnadu) ACCESS-CM2 model is best and its  RMSE 

value is 4.45 which is the lowest value among rest, Correlation value is .51 shows the 

highest positive correlation, mean bias error  is -0.01 lies near to the zero indicates it has 

less difference from original data. 

INM-CM5-0 .73 9.58 -2.22 

MPI-ESM1-2-HR .68 10.03 -2.21 

MPI-ESM1-2-LR .78 8.56 -2.19 

MRI-ESM2-0 .62 11.46 -2.26 

NorESM2-LM .74 9.34 -2.22 

NorESM2-MM .77 8.88 -2.18 

ENSEMBLE .84 7.76 -2.21 

 STATION BEST MODEL 

Amw-Maharashtra BCC-CSM2-MR 
 

As-Tamilnadu ACCESS-CM2 
 

Aw-Madhya Pradesh MPI-ESM1-2-LR 
 

Bshw-Rajasthan 
 

BCC-CSM2-MR 
 

Bwhw- Extreme Western Rajasthan MPI-ESM1-2-LR 
 

Cwg- Uttar Pradesh 
 

EC-Earth3 
 

Dfc-Arunachal Pradesh EC-Earth3-Veg 
 

E-Himachal Pradesh EC-Earth3-Veg 
 

Table 4.2  Suitable model for different climatic regions 
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  In the Third  region Aw(Madhya Pradesh) MPI-ESM1-2-LR model is best and its  

RMSE value is 4.57 which is the lowest value among rest, Correlation value is .68 shows 

the highest positive correlation, mean bias error  is .10. 

 In the fourth  region Bshw(Rajasthan) BCC-CSM2-MR model is best and its  

RMSE value is 2.69 which is the lowest value among rest,Correlation value is .38 shows 

the highest positive correlation,mean bias error  is .063. 

 In the fifth  region Bwhw(Extreme Westen Rajasthan) MPI-ESM1-2-LR 

model is best and its  RMSE value is 2.01 which is the lowest value among 

rest,Correlation value is .20 shows the highest positive correlation,mean bias error  is -

0.01.  

 In the sixth  region Cwg(Uttar Pradesh) EC-Earth3 model is best and its  RMSE 

value is 4.25 which is the lowest value among rest,Correlation value is .69 shows the 

highest positive correlation,mean bias error  is .38 

 In the seventh  region Dfc (Arunanchal pradesh) EC-Earth3-Veg model is best and 

its  RMSE value is 7.61 which is the lowest value among rest,Correlation value is .69 

shows the highest positive correlation,mean bias error  is -.55. 

 In the eighth region E (Himachal Pradesh) EC-Earth3-Veg model is best and its  

RMSE value is 3.27 ,Correlation value is .11 shows the  positive correlation,mean bias 

error  is .64, by comparing the rest models RMSE,mean bias error, correlation values.  

4.2 ANALYSIS OF TREND OF METEOROLOGICAL VARIABLES WITH MMK AND 

SEN’S SLOPE TEST 

  Analysis of trends was done with MMK and sen’s slope test .Trends in precipitation 

and temperature for entire India under four SSP scenarios for the time period 2024–2100 

was analysed and the results are shown in table 4.4. 

 

 

P
R
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C
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IO

N
 

 
HISTOR

IC 

SSP1

26 

SSP2

45 

SSP3

70 

SSP5

86 

  

SUMM

ER 

  

  

Z-

Val

ue 

0.92 0.21 0.43 0.68 0.90 

Sen 

slop

e 

0.002 0.001 0.003 0.005 0.006 

Table 4.3 Trends in precipitation and temperature for entire India under four SSP 

scenarios for the time period 2024–2100 
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MONS

OON 

  

  

Z-

Val

ue 

-0.06 0.43 0.75 1.22 1.93 

Sen 

slop

e 

-0.0003 
0.008

3 

0.016

1 

0.027

1 

0.041

3 

  

AUTU

MN 

  

  

Z-

Val

ue 

-0.61 0.36 1.07 1.08 1.54 

Sen 

slop

e 

-0.0017 0.005 0.009 0.013 0.023 

  

WINTE

R 

  

  

Z-

Val

ue 

-0.03 0.06 -0.13 0.36 0.11 

Sen 

slop

e 

0.0002 
0.000

3 

-

0.000

4 

0.003

0 

0.000

8 

T
M

A
X

 

  

SUMM

ER 

  

  

Z-

Val

ue 

1.108 1.559 4.007 5.953 6.737 

Sen 

slop

e 

0.006 0.008 0.022 0.037 0.050 

  

MONS

OON 

  

  

Z-

Val

ue 

1.15 1.34 1.06 5.21 5.84 

Sen 

slop

e 

0.0051 
0.007

6 

0.025

8 

0.032

9 

0.041

3 

  

AUTU

MN 

  

  

Z-

Val

ue 

2.79 1.57 3.33 5.63 6.47 

Sen 

slop

e 

0.013 0.010 0.017 0.032 0.043 

  

  

WINTE

R 

  

Z-

Val

ue 

1.49 2.39 4.36 5.56 6.51 

Sen 

slop

e 

0.008 0.015 0.026 0.038 0.052 

T
M

IN
 

  

SUMM

ER 

  

  

Z-

Val

ue 

1.49 1.71 5.24 7.05 7.65 

Sen 

slop

e 

0.003 0.008 0.025 0.045 0.055 

  

MONS

OON 

  

  

  

Z-

Val

ue 

1.05 1.77 5.52 7.14 7.58 

Sen 

slop

e 

0.004 0.006 0.020 0.037 0.043 
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 Precipitation for the last seven decades has shown decreasing trend season to 

season for year wise except summer. Monsoon precipitation averagely decreased at the 

rate of   -0.0003 mm per season for India. Maximum and minimum temperature increased 

for all the seasons. Particularly, summer season saw 0.006℃ hike each season since mid 

of the 20th century. For the future time period, precipitation and temperature projected 

increasing pattern from SSP126 to SSP 586 case. Future monsoon under SSP126 case 

projected 0.0083mm rainfall increase for each season, while SSP 586 shows 0.0413 mm 

per season. Projected summer also appears to be hottest as per SSP 586 case with 0.050℃ 

temperature increase. In the eco-friendly SSP26 scenario, the temperature increase is in 

the modest level (0.008℃). Like rainfall increase, the variability of rainfall is also more 

in SSP 586 scenario. Spatially, western region projected more prone to high rainfall 

variability as well as rainfall decrease. 

4.2.1 Precipitation 

 
In order to analyse the trend of precipitation and temperatures for past as well as 

future under four SSP scenarios for four climatic seasons (summer, monsoon, autumn and 

winter), the MMK and Sen’s slope test was applied. 

  

AUTU

MN 

  

  

Z-
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ue 

2.57 1.27 5.04 6.92 7.37 

Sen 

slop

e 

0.013 0.007 0.026 0.048 0.053 

  

  

WINTE
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Z-

Val

ue 

1.49 1.59 4.88 6.56 7.04 

Sen 

slop

e 

0.010 0.011 0.030 0.053 0.062 
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4.2.1.1 Historical data 

 

 Z value for trend analysis using historic data is shown in figure 4.1. Sen’s slope value 

for trend analysis using historic data is shown in figure 4.2. Overall, the historical trend of 

precipitation for the past seventy years since 1950 upto recent 2022 shows highly decreasing 

trend as per Z and Sen’s slope value with minor exception for few regions. Regarding season 

and region specific, during summer season the Northern plain showed increasing trend, but in 

the case of monsoon season observed increasing trend for Southern region. For the autumn 

season whole of the country showed decreasing trend, while Himalayan region witnessed 

increasing winter rainfall as an exception one 

The precipitation during the summer season is more in certain parts of Northern 

and central India, whereas it is almost uniform during monsoon season, very less or 

absent during autumn and the northern most parts receive more precipitation during the 

winters. 

4.2.1.2 Future data-SSP 1 

 

The future precipitation trend approached under near (2024-2060) and far future 

(2061-2100) time period. In the eco-friendly SSP scenario, despite not remarkable 

increasing trend, positive trend is observed for all the four seasons as well as most of the 

Fig.  4.1 Z value for trend analysis 

using historic data 

Fig. 4.2  Sen’s slope value for trend 

analysis using historic data 

 

4.2.1.1 Historical data 
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country. Sen’s slope value shows increasing trend of rainfall for all four seasons 

throughout the country. As far as time period is concerned, the near future shows 

relatively more increasing trend than far future. SSP1 near future Z value is shown in 

figure 4.3. SSP1 far future Z value is shown in figure 4.4. 

 

 

 

  

Fig. 4.5 SSP1 near future Sen’s 

slope value 

Fig. 4.6 SSP1 far future Sen’s 

slope value 

Fig. 4.4  SSP1 far future Z value Fig. 4.3 SSP1 near future Z value  
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  SSP1 near future Sen’s slope value is shown in figure 4.5.In the near future, 

precipitation during summer and winter seasons is lesser but the north, central, southern 

and eastern parts of the country receive more precipitation during the monsoon and 

central parts along with some longitudinal strips from north to south receives more during 

the autumn. 

 SSP1 far future Sen’s slope value is shown in figure 4.6 .In the far future, 

precipitation shows a positive shift towards eastern region in monsoon and the autumn 

shift towards the western regions. During the winter season, precipitation all over the 

country is less and almost uniform. 

4.2.1.3 Future data-SSP 2 

  

 

Fig.  4.7 SSP2 near future Z value  

Fig. 4.9 SSP2 near future Sen’s slope 

value   

Fig.  4.8 SSP2 far future Z value 

Fig. 4.10  SSP2 far future Sen’s slope 

value 

 



  

39 
 

  SSP2 near future Z value is shown in figure 4.7. SSP2 far future Z value is shown 

in figure 4.8. SSP2 near future Sen’s slope value is shown in figure 4.9. SSP2 far future 

Sen’s slope value is shown in figure 4.10. In this case, the range of Z and Sen’s slope 

value is increased compared to previous SSP 1 case, also rainfall severely shows 

decreasing trend for most of the season and country except for the monsoons. 

4.2.1.4 Future data-SSP 3 

  

 

Fig. 4.11 SSP3 near future Z value  Fig. 4.12 SSP3 far future Z value 

 

Fig. 4.14  SSP3 far future sen’s slope 

value 

Fig. 4.13 SSP3 near future sen’s slope 

value 
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SSP3 near future Z value is shown in figure 4.11. SSP3 near future sen’s slope 

value is shown in figure 4.13. In the near future, during summer and winter, average 

precipitation is observed. During autumn season, western parts receive the maximum 

precipitation and other regions receive moderate precipitation. During the monsoon 

season, almost all parts receive more rainfall, specifically the eastern parts.  

SSP3 far future Z value is shown in figure 4.12. SSP3 far future sen’s slope value 

is shown in figure 4.14. In the far future, precipitation tends to increase in almost all 

regions with least observations in the western parts despite not much high value. Autumn 

and winters tend to receive increased precipitation as compared to the older observations. 

During monsoon, almost all parts of the country receive increased precipitation. 

 

4.2.1.5 Future data-SSP 5 

 

  

 

 

 

 

 

 

Fig. 4.15  SSP5 near future Z value        Fig. 4.16  SSP5 near future Z value 
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 SSP5 near future Z value is shown in figure 4.15 . SSP5 near future sen’s slope value 

is shown in figure 4.17 . In the near future, during summer, precipitation seems to be very 

less in western parts while there is moderate precipitation in other parts of country. Winters 

seem to receive less precipitation whereas during autumn, precipitation is very less in the 

eastern regions and patches of areas with increase in precipitation are scattered in other parts 

of the country. The precipitation during monsoon is maximum for almost all the parts 

whereas it is very less for regions that lie on the longitudinal midline of the country from 

north to south. 

     SSP5 far future Z value is shown in figure 4.16. SSP5 far future Sen’s slope value is 

shown in figure 4.18. In the far future, northeastern region receives more precipitation during 

summer and winter seems to have less precipitation all throughout the country. Increased 

precipitation is there in almost all parts except the eastern end during the autumn season 

whereas the monsoon season shows the increase in precipitation all throughout the country in 

the high emission scenario. 

  

Fig. 4.17  SSP5 near future sen’s slope 

value 

 value 

Fig. 4.18 SSP5 far future Sen’s slope 

value 
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4.2.2  Maximum Temperature (Tmax) 

 

The results of Modified Mann Kendall (Z values) and the Sen’s slope tests done 

on the historical and the future datas of the considered 4 SSP scenarios are compared in 

order to understand the trend. 

        4.2.2.1 Historic data 

                                 

 
 

Z value for trend analysis using historic data is shown in figure 4.19. Sen’s slope 

value for trend analysis using historic data is shown in figure 4.20. During summer, all 

parts except Northern regions have higher temperatures. The trend shifts to all parts 

except south east and south west during the monsoon. All over the country, temperature 

received is more in autumn and in winters, transverse central parts receive lesser 

temperature.  

 

 

 

 

 

Fig. 4.19  Z value for trend 

analysis using historic data 

Fig. 4.20 Sen’s slope value for 

trend analysis using historic data 
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    4.2.2.2    Future data-SSP 1 

 

 

 

 

 

 

 

 

 SSP1 near future Z value is shown in figure 4.21. SSP1 near future sen’s slope value 

is shown in figure 4.23. SSP1 far future Z value is shown in figure 4.22. SSP1 far future 

Sen’s slope value 4.24. In the near future, maximum temperature in all regions tends to 

Fig. 4.21 SSP1 near future Z value  

Fig. 4.23 SSP1 near future sen’s 

slope value 

  

Fig. 4.22 SSP1 far future Z value 

Fig. 4.24 SSP1 far future Sen’s 

slope value 
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increase except in some central areas during monsoon. In far future, it tends to decrease in all 

seasons except in the eastern part of the country with an increase during the winter season. 

In the sustainable path based SSP 1 scenario, overall the Tmax value is under 

control without much increase. Besides, the maximum value of range is also too less. 

 4.2.2.3   Future data SSP-2 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 SSP2 near future Z value is shown in figure 4.25. SSP2 near future sen’s slope 

value is shown in figure 4.27. In the near future, Tmax shows an increasing trend in 

summer, monsoon and winter in almost all parts of country except a decrease is observed 

for the longitudinal midland in monsoon. In autumn, Tmax has a decreasing trend. 

Fig. 4.25 SSP2 near future Z value  

Fig. 4.27 SSP2 near future sen’s 

slope value 

 

Fig. 4.26 SSP2 far future  Z value 

Fig. 4.28 SSP2 far future Sen’s slope 

value 
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SSP2 far future Z value is shown in figure 4.26. SSP2 far future Sen’s slope value 

is shown in figure 4.28.In the far future, almost all parts of the country receive increased 

Tmax. But in monsoon, slightly eastward longitudinal midland shows a decrease in the 

maximum temperature. 

 

 

 

 

 

 

 

 

  

 

 

Fig. 4.29 SSP3 near future Z value  Fig. 4.30 SSP3 far future Z value 

 

4.2.2.4  Future data- SSP 3 

Fig. 4.31 SSP3 near future Sen’s 

slope value  

 

 

 

Fig. 4.32 SSP3 far future Sen’s 

slope value 
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SSP3 near future Z value is shown in figure 4.29. SSP3 near future sen’s slope 

value is shown in figure 4.31. In the near future, maximum temperature all across the 

country in all the 4 seasons show a drastic increase with exception of small areas of North-

East receiving lesser Tmax in summer. 

 SSP3 far future Z value is shown in figure 4.30. SSP3 far future Sen’s slope value 

is shown in figure 4.32. In the far future, trend is similar as of near future, but with a 

relatively small increasing value. The Tmax shows a decreasing trend in certain parts 

during monsoon and autumn. 

4.2.2.5 Future data- SSP 5 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.33 SSP5 near future Z value  Fig. 4.34 SSP5 far future Z value 

Fig. 4.36 SSP5 far future Sen’s slope 

value 
Fig. 4.35 SSP5 near future Sen’s 

slope value 
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In the risky high emission scenario, most of the country shows remarkable 

increasing trend as per the Z-value compared to previous SSP scenarios. 

 SSP5 near future Z value is shown in figure 4.33. SSP5 near future sen’s slope value 

is shown in figure 4.35. In the near future, all parts of the country experience high 

temperatures with the exception of some places in eastern strip receiving lesser temperature 

in the monsoon. 

 SSP5 far future Z value is shown in figure 4.34. SSP5 far future sen’s slope value is 

shown in figure 4.36. In the far future, Tmax all over the country during all seasons is 

high, but not as much as in the near future. 

4.2.3 Minimum Temperature (Tmin) 

The results of Modified Mann Kendall (Z values) and the Sen’s slope tests done on the 

historical and the future data’s of the considered 4 SSP scenarios are compared in order to 

understand the trend. 

4.2.3.1 Historical data 

 

 

 Z value for trend analysis using historic data is shown in figure 4.37. Sen’s 

slope value for trend analysis using historic data is shown in figure 4.38. 

Fig. 4.38 Sen’s slope value for 

trend analysis using historic data 

Fig. 4.37 Z value for trend 

analysis using historic data 
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4.2.3.2 Future data- SSP 1 

 Tmin  shows a decreasing trend for most of the country for almost seasons. 

The increasing trend is not remarkable as it was for observed historic data. The minimum 

temperature is more during the autumn and winter seasons in almost all throughout the 

country with some exceptions.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.39 SSP1 near future Z value  

Fig. 4.41 SSP1 near future Sen’s 

slope value 

 

Fig. 4.40 SSP1 far future Z value 

Fig. 4.42 SSP1 far future Sen’s 

slope value 
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 SSP1 near future Z value is shown in figure 4.39. SSP1 near future sen’s slope 

value is shown in figure 4.41. In the near future, Tmin is increased in almost all parts of 

the country with a slight decrease in the trend during the monsoon in eastern parts. 

 SSP1 far future Z value is shown in figure 4.40. SSP1 far future sen’s slope 

value is shown in figure 4.42. In the far future, Tmin has a decreasing trend in almost all 

the parts during all the 4 seasons. With an overall positive trend almost all over, it shows 

an increase only in certain parts of north east in winter. 

 4.2.3.3 Future data- SSP 2 

 

Fig. 4.43 SSP2 near future Z value  

Fig. 4.45 SSP2 near future sen’s slope 

value  

Fig. 4. 44 SSP2 far future Z value 

Fig. 4.46 SSP2 near future sen’s slope 

value  
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    SSP2 near future Z value is shown in figure 4.43. SSP2 near future sen’s slope 

value is shown in figure 4.45. In the near future, Tmin is increased all over the country in 

four seasons. During monsoon, all the parts except the western end regions experience the 

decrease in minimum temperature. 

 SSP2 far future Z value is shown in figure 4.44. SSP2 far future sen’s slope value is 

shown in figure 4.46. In the far future, the same trend as of the near future is observed. 

During the monsoon, Tmin has a decreasing trend in the eastern regions and during the 

autumn, eastern regions tend to have decrease in the minimum temperature.  

4.2.3.4 Future data- SSP 3 

 

Fig. 4.47 SSP3 near future Z value 
Fig. 4.48 SSP3 far future Z value 

Fig. 4.49 SSP3 near future sen’s slope 

value  

Fig. 4.50 SSP3 far future Sen’s slope 

value 

Fig. 4.47 SSP2 near future Z value  

 

Fig. 4.48 SSP2 near future Z value  
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SSP3 near future Z value is shown in figure 4.47. SSP3 near future sen’s slope 

value is shown in figure 4.49. SSP3 far future Z value is shown in figure 4.48. SSP3 far 

future sen’s slope value is shown in figure 4.50. In the near future, for all seasons except 

monsoon, the Tmin is increasing. In the far future, during summer, monsoon and autumn, 

Tmin is decreasing, but in autumn, the eastern parts receive increased Tmin. During the 

winter season, Tmin all across the country is increased. 

4.2.3.5 Future data- SSP 5 

 Fig. 4.52 SSP5 far future Z value Fig. 4.51 SSP5 near future Z value 
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 SSP5 near future Z value is shown in figure 4.51. SSP5 near future sen’s slope 

value is shown in figure 4.53. In the near future, Tmin during the summer season is 

decreased in the country but in the eastern regions, the Tmin is more. The Tmin is 

decreased in all parts during monsoon and in autumn and winter, there is an increasing 

trend in the Tmin. 

 SSP5 far future Z value is shown in figure 4.52. SSP5 far future sen’s slope value is 

shown in figure 4.54. In the far future, Tmin all across the country is decreased in all the 

4 seasons but during winter, there is an increase in the Tmin all throughout the country. 

The simulated future rainfall and temperature variable all are showing positive 

trend up to the end of the 21st century except few variation in some cases. In the past 

historic trend, except southern region, remaining region showed decreasing trend 

particularly for the Monsoon season, but the future monsoon showed pan India increasing 

pattern for all the four SSP cases. Similarly, the future surface air temperature is also 

observed to have a  positive trend for all the four seasons through the India. The 

increasing temperature has chances to influence precipitation extremes.  

Fig. 4.53 SSP5 near future sen’s 

slope value  

Fig. 4.54 SSP5 far future Sen’s 

slope value 
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The Coefficient of Variation (C.V.) is a statistical measure of the relative 

variability of a dataset. It is calculated as the ratio of the standard deviation to the mean, 

often expressed as a percentage. A higher C.V. indicates greater variability relative to the 

mean. 

 

 SSP126 SSP245 SSP370 SSP586 

SUMMER 46 50 47 48 

MONSOON 24 23 27 27 

AUTUMN 37 15 40 39 

WINTER 46 54 51 49 
 

 Here the C.V. of future precipitation for four different scenarios (SSP126,SSP245, 

SSP370, SSP586) across four seasons (summer, monsoon, autumn, winter) is depicted. 

 The C.V. values for summer precipitation are relatively high across all scenarios, 

with SSP245 showing the highest variability (50%) and SSP126 the lowest (46%). This 

suggests that, regardless of the scenario, summer precipitation is expected to have 

considerable variability. 

 Monsoon precipitation shows lower variability compared to other seasons, with 

C.V. values ranging from 23% to 27%. SSP245 exhibits the least variability (23%), while 

SSP370 and SSP586 are tied for the highest variability (27%). Variability increases 

slightly in the higher emission scenarios, which indicates there is a chance of sudden 

precipitations that may lead to flash floods. 

 Autumn precipitation variability shows significant differences between scenarios. 

SSP245 has the lowest C.V. (15%), indicating more stable precipitation. In contrast, 

SSP370 has the highest variability (40%), suggesting more fluctuation in precipitation 

levels. 

 Winter precipitation variability is high across all scenarios, with SSP245 showing 

the highest C.V. (54%) and SSP126 the lowest (46%). This indicates that winter 

precipitation is expected to be quite variable, especially in SSP245. 

 Overall, these patterns can help inform water resource management, agricultural 

planning, and disaster preparedness by highlighting the expected variability in 

precipitation under different future scenarios. 

Table 4.4 Coefficient of Variation (C.V.)   of the future 

precipitation   
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4.3 IDENTIFICATION OF CHANGE POINT IN UPCOMING TIME PERIOD FOR THE 

METEOROLOGICAL VARIABLES 

  The Pettit change point test was used to identify a single change point in a time 

series. It is essential in the analysis of climate and hydrological data to detect a shift or an 

abrupt change. 

 4.3.1 SSP1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A)  (B)  

(C)  

Fig. 4.55  Change point analysis of future data for SSP1 (A) Precipitation (B) T max 

(C) Tmin 
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For precipitation, changes in almost all the parts of the country are expected to 

happen between 2056 and 2100 during summer and monsoon. During winter, the 

longitudinal midland shows the change during 2076-2100. Some north- eastern areas 

seems to experience the change in precipitation earlier from 2024-2040 period during 

autumn and winter with the addition of the western end experiencing similar earlier 

precipitation change during autumn. 

 For Tmax, all the seasons experience the change during 2050-2055 period in almost 

all areas except some. In summer, the change of Tmax in the north eastern parts happen 

early during 2039-2043 whereas in autum this early change occurs in certain strips in the 

westen parts. 

 For Tmin, during summer, the western end and north eastern parts experience early 

change during 2040-2046 and in monsoon, almost all changes occur during 2046 -2060. 

Winter and autumn season experience earlier changes in Tmax during 2040-2060 time 

frame. 

 

 

 

4.3.2 SSP2 

(A)  

 

(B)  
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 For precipitation, almost all the parts experience the change during 2045-2084 in 

the summer and monsoon whereas in autumn, most changes occur during 2045-2071 

timeframe. In the winter, almost all areas experience changes from 2045 to 2084 but the 

western ends experience early changes during 2029-2045. 

 For Tmax, changes in summer all over India occurs during 2059- 2069. In monsoon 

and autumn, early changes happen towards the eastern parts of the country during the 

2042- 2059 timeframe. In winter, almost all areas experience early changes (2042- 2059) 

with the exception of central longitudinal midland experiencing the change during 2064- 

2069. 

 For Tmin, for all the seasons, early changes are observed between the 2047- 2062 

timeframe. 

(C)  

Fig. 4.56 Change point analysis of future data for SSP2 (A) Precipitation (B) T max 

(C) Tmin 
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(A)  (B)  

Fig. 4.57 Change point analysis of future data for SSP3 (A) Precipitation (B) T max 

(C) Tmin  

(C)  

4.3.3 SSP3 
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 For Precipitation, all the changes occur during the 2046-2086 timeframe in almost 

all parts of the country with the exception of early changes during the 2029- 2046 time 

period in the summer seasons across the longitudinal midland. 

 For Tmax, changes in all the seasons occur mainly during 2058-2068 whereas 

during summer and monsoon, certain areas in the western side experience early change 

during the 2054- 2058 timeframe. 

 For Tmin, all changes occur between 2059 and 2067. Certain strips across the 

midland and north east experience changes during 2055- 2059 in summer and some areas 

of western India experience the change in the early 2055-2059 timeframe.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(A)  (B)  

4.3.4 SSP5 
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The precipitation changes trend early from 2028 onwards in almost all areas across the 

country and this early changing trend is most visible for the winter season. Some areas of 

the western India show change during the 2070-2080 timeframe in the summer and 

monsoon seasons. 

 The Tmax in almost all regions of India experience change in trend from 2060- 

2069 whereas during the monsoon season, there is an early change in the trend for the 

western and eastern ends. 

 The change in Tmin occurs across the country during the 2062- 2067 in the 

summers and monsoons whereas for autumn season, there is an earlier change in trend 

especially towards the eastern side of the midland. During winters also, there is an earlier 

change in trend (2058-2060) experienced for the whole of western India. 

4.4 COMPARISON OF FUTURE TIME SERIES OF METEOROLOGICAL VARIABLE        

USING WAVELET COHERENCE 

 The wavelet coherence plot is a valuable technique for investigating the correlation 

between two signals in both time and meteorological parameters. It provides insights into 

the dynamic relationships between signals, revealing areas of strong correlation or no 

Fig. 4.58 Change point analysis of future data for SSP5 (A) Precipitation (B) T max 

(C) Tmin  

(C) 
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correlation. The wavelet coherence plot brings out a figure with time on the x-axis and 

frequency of period value on the y-axis. On the right-hand side, the bar indicates the 

power of the coherence. The yellow colour means higher power, and the blue colour 

means lower coherence between the terms. 

  

The precipitation- maximum temperature plot shows that two time series are less 

correlated in almost all the time intervals and in frequencies, while the maximum 

correlation is observed upto 2 years in all the scenarios. Moreover, the correlation power 

is very high for ssp 2-4.5, ssp 3-7.0 and ssp 5-8.5. In almost all significant areas, left 

pointed arrows suggest negative correlation and up pointed arrows tell that precipitation 

leads Tmax. The right pointed arrows suggest positive correlation and downward pointed 

arrows tell that Tmax.   leads precipitation. 

Fig. 4.59 Wavelet coherence plot of region 1- Amw 

Fig. 4.60 Wavelet coherence plot of region 2- As 
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The precipitation- maximum temperature plot shows that two time series are 

more correlated in almost all the time intervals and in frequencies for ssp1-2.6. In case of 

ssp2-4.5, comparatively, the correlation is observed to have less power whereas in ssp3-

7.0, less correlation is observed after 4 years. Ssp 585 shows a similar correlation as of 

ssp2-4.5 . In almost all significant areas, left pointed arrows suggest negative correlation 

and up pointed arrows tell that precipitation leads Tmax. The right pointed arrows 

suggest positive correlation and downward pointed arrows tell that Tmax leads 

precipitation. 

  

The precipitation- maximum temperature plot shows that two time series are 

correlated with high power from 4 to 32 years in the ssp1-2.6 and comparatively less 

power in the ssp2-4.5. In ssp3-7.0, long term steady correlation is not observed, whereas 

in the ssp5-8.5, high power correlation is observed. In almost all significant areas, left 

pointed arrows suggest negative correlation and up pointed arrows tell that precipitation 

leads Tmax. The right pointed arrows suggest positive correlation and downward pointed 

arrows tell that Tmax leads precipitation. 

 

 

 

Fig. 4.60 Wavelet coherence plot of region 2- As 

Fig. 4.61 Wavelet coherence plot of region 3- Aw 
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The precipitation- maximum temperature plot shows that two time series are 

correlated with high power in the ssp 245 and ssp 585 and comparatively less power in the 

ssp1-2.6 and ssp3-7.0 .In ssp1-2.6 and ssp3-7.0, long term steady correlation is not 

observed. In almost all significant areas, left pointed arrows suggest negative correlation 

and up pointed arrows tell that precipitation leads Tmax. The right pointed arrows suggest 

positive correlation and downward pointed arrows tell that Tmax leads precipitation 

  

The precipitation- maximum temperature plot shows that two time series are 

correlated with high power in the ssp1-2.6 and ssp3-7.0 and comparatively less power in 

the ssp2-4.5 and ssp5-8.5 . In ssp2-4.5 and ssp5-8.5, long term steady correlation is not 

observed, whereas in the ssp3-7.0, high power correlation is observed. In almost all 

significant areas, left pointed arrows suggest negative correlation and up pointed arrows 

tell that precipitation leads Tmax. The right pointed arrows suggest positive correlation 

and downward pointed arrows tell that Tmax leads precipitation. 

Fig. 4.62 Wavelet coherence plot of region 4- Bshw 

Fig. 4.63 Wavelet coherence plot of region 5- Bwhw 
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The precipitation- maximum temperature plot shows that two time series are 

highly  correlated from 1 to 2 years in all the 4 ssp scenarios. Greater correlation is 

observed for ssp1-2.6 and ssp3-7.0. In ssp2-4.5 and ssp5-8.5, long term steady correlation 

is not observed, whereas in the ssp3-7.0, high power correlation is observed. In almost all 

significant areas, left pointed arrows suggest negative correlation and up pointed arrows 

tell that precipitation leads Tmax. The right pointed arrows suggest positive correlation 

and downward pointed arrows tell that Tmax leads precipitation. 

 

The precipitation- maximum temperature plot shows that two time series are 

correlated in all the 4 ssp scenarios. Greater correlation is observed for ssp3-7.0 

throughout the years. In ssp1-2.6, ssp2-4.5 and ssp5-8.5, long term steady correlation is 

not observed, whereas in the ssp3-7.0, high power correlation is observed. In almost all 

significant areas, left pointed arrows suggest negative correlation and up pointed arrows 

Fig. 4.64 Wavelet coherence plot of region 6- Cwg 

Fig. 4.65 Wavelet coherence plot of region 7- Dfc 
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tell that precipitation leads Tmax. The right pointed arrows suggest positive correlation 

and downward pointed arrows tell that Tmax leads precipitation. 

 

  

The precipitation- maximum temperature plot shows that two time series have 

high correlation from 1 to 2 years in all the 4 SSP scenarios. Greater correlation is 

observed for ssp1-2.6. In ssp2-4.5, ssp3-7.0 and ssp5-8.5, long term steady correlation is 

not observed, whereas in the ssp 126, high power correlation is observed. In almost all 

significant areas, left pointed arrows suggest negative correlation and up pointed arrows 

tell that precipitation leads Tmax. The right pointed arrows suggest positive correlation 

and downward pointed arrows tell that Tmax leads precipitation. 

The suitable models for different climatic regions was identified and the trends 

in the meteorological variables were analysed using the MMK and Sen's slope test. 

Moreover,the change point detection was done  using the Pettit test and the correlation of 

meteorological variables was analysed through the Wavelet coherence plots. 

 

 

 

  

Fig. 4.66 Wavelet coherence plot of region 8- E 
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Summary and conclusion 
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SUMMARY AND CONCLUSION 

 In the present study, three key meteorological variables precipitation, maximum 

and minimum temperature trend pattern were analysed by MMK and SSE statistical tests. 

For this, future variables were derived from CMIP6 climatic model under four SSP 

scenarios, while historical data  was derived from IMD grid data at fine spatial resolution 

of 0.25° × 0.25°. The suitable models for different climatic regions was identified and the 

trends in the meteorological variables were analysed using the MMK and Sen's slope test. 

Moreover,the change point detection was done  using the Pettit test and the correlation of 

meteorological variables was analysed through the Wavelet coherence plots.  The main 

findings of this study are summarized as follows:  

1. It was inferred that ensembled data is more suitable for the meteorological variable  

analysis and also found out the suitable models for each  climatic region stations other 

than ensemble data. 

2. Precipitation for the last seven decades has shown decreasing trend season to season 

for year wise except summer. Monsoon precipitation averagely decreased at the rate of   

-0.0003 mm per season for India. 

3. Maximum and minimum temperature increased for all the seasons. Particularly, 

summer season saw 0.006℃ hike each season since mid of the 20th century. 

4. For the future time period, precipitation and temperature projected increasing pattern 

from SSP126 to SSP 586 case. Future monsoon under SSP126 case projected 

0.0083mm rainfall increase for each season, while SSP 586 shows 0.0413 mm per 

 season. 

5.  Projected summer also appears to be hottest as per SSP 586 case with 0.050℃ 

temperature increase. In the eco-friendly SSP26 scenario, the temperature increase is 

in the modest level (0.008℃). 

6. Like rainfall increase, the variability of rainfall is also more in SSP 586 scenario. 

7. Spatially, western region projected more prone to high rainfall variability as well as 

rainfall decrease. 

8. The precipitation- maximum temperature plot shows that two time series are less 

correlated in almost all the time intervals and in frequencies, while the maximum 

correlation is observed upto 2 years in all the scenarios 
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 It is further concluded that, high emission scenarios projected high precipitation 

variation despite increasing pattern, but the eco-friendly SSP126 scenario project the less 

precipitation variability.  
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APPENDIX- I 

Comparison of 13 models as well as the ensembled data among eight stations 

 Result of the model analysis for the region As 

 

MODELS 

                              

                                       As 

CORRELATION 

COEFFICIENT 
RMSE 

MEAN BIAS 

ERROR 

ACCESS-CM2 .51 4.45 -0.01 

ACCESS-ESM1-5 .43 5.06 0.01 

BCC-CSM2-MR .18 5.27 0.00 

CanESM5 .40 4.95 0.01 

EC-Earth3 .50 4.63 0.01 

EC-Earth3-Veg .51 4.519 -0.02 

INM-CM4-8 .51 4.54 0.00 

INM-CM5-0 .31 5.54 0.00 

MPI-ESM1-2-HR .19 6.28 -0.02 

MPI-ESM1-2-LR .17 6.01 0.00 

MRI-ESM2-0 .44 4.92 -0.03 

NorESM2-LM .23 5.48 -0.03 

NorESM2-MM .28 5.32 -0.01 

ENSEMBLE .59 3.74 -0.01 

 

Result of the model analysis for the region Aw 

 

MODELS 

                              

                                       Aw 

CORRELATION 

COEFFICIENT 
RMSE 

MEAN BIAS 

ERROR 

ACCESS-CM2 .43 6.03 .09 

ACCESS-ESM1-5 .27 6.53 0.13 

BCC-CSM2-MR .61 4.55 0.07 

CanESM5 .26 6.55 0.061 

EC-Earth3 .64 4.82 0.08 
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EC-Earth3-Veg .68 4.63 0.11 

INM-CM4-8 .62 5.66 0.09 

INM-CM5-0 .63 5.87 0.07 

MPI-ESM1-2-HR .64 4.80 0.06 

MPI-ESM1-2-LR .68 4.57 0.10 

MRI-ESM2-0 .62 4.97 0.04 

NorESM2-LM .55 5.45 0.09 

NorESM2-MM .60 5.01 0.09 

ENSEMBLE .79 3.42 0.08 

 

 Result of the model analysis for the region Bshw 

 

MODELS 

                              

                                       Bshw 

CORRELATION 

COEFFICIENT 

RMSE MEAN BIAS 

ERROR 

ACCESS-CM2 .0.06 3.116 0.059 

ACCESS-ESM1-5 0.25 3.017 0.036 

BCC-CSM2-MR 0.38 2.69 0.063 

CanESM5 0.03 3.562 0.063 

EC-Earth3 0.31 3.131 0.04 

EC-Earth3-Veg 0.38 3.077 0.043 

INM-CM4-8 0.35 3.247 0.036 

INM-CM5-0 0.29 3.481 0.041 

MPI-ESM1-2-HR 0.26 3.448 0.033 

MPI-ESM1-2-LR 0.26 3.15 0.052 

MRI-ESM2-0 0.24 3.328 0.048 

NorESM2-LM 0.29 3.047 0.06 

NorESM2-MM 0.31 3.025 0.063 
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ENSEMBLE 0.52 2.097 0.049 

 

Result of the model analysis for the region Bwhw 

 

MODELS 

                              

                                       Bwhw 

CORRELATION 

COEFFICIENT 

RMSE MEAN BIAS 

ERROR 

ACCESS-CM2 -0.05 2.24 0.00 

ACCESS-ESM1-5 -0.03 2.39 - 0.005 

BCC-CSM2-MR 0.11 2.02 0.00 

CanESM5 -0.04 2.15 -0.01 

EC-Earth3 0.10 2.27 -0.01 

EC-Earth3-Veg 0.19 2.12 -0.01 

INM-CM4-8 0.12 2.63 0.00 

INM-CM5-0 0.10 2.50 0.00 

MPI-ESM1-2-HR 0.07 2.41 0.01 

MPI-ESM1-2-LR 0.20 2.01 -0.01 

MRI-ESM2-0 -0.01 2.13 -0.02 

NorESM2-LM 0.08 2.25 0.01 

NorESM2-MM 0.08 2.35 0.01 

ENSEMBLE 0.19 1.68 0.00 

 

 Result of the model analysis for the region Cwg  

 

MODELS 

                              

                                       Cwg 

CORRELATION 

COEFFICIENT 

RMSE MEAN BIAS 

ERROR 

ACCESS-CM2 0.29 6.29 0.43 

ACCESS-ESM1-5 0.56 5.17 0.40 
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BCC-CSM2-MR 0.62 4.32 0.42 

CanESM5 -0.20 7.23 0.42 

EC-Earth3 0.69 4.25 0.38 

EC-Earth3-Veg 0.69 4.46 0.42 

INM-CM4-8 0.65 4.47 0.38 

INM-CM5-0 0.60 5.11 0.44 

MPI-ESM1-2-HR 0.62 4.52 0.40 

MPI-ESM1-2-LR 0.62 4.55 0.42 

MRI-ESM2-0 0.44 5.12 0.43 

NorESM2-LM 0.35 6.54 0.42 

NorESM2-MM 0.55 6.54 0.42 

ENSEMBLE 0.74 3.47 0.42 

 

Result of the model analysis for the region Dfc 

 

MODELS 

                              

                                       Dfc 

CORRELATION 

COEFFICIENT 
RMSE 

MEAN BIAS 

ERROR 

ACCESS-CM2 0.62 7.76 -0.50 

ACCESS-ESM1-5 0.58 8.33 -0.44 

BCC-CSM2-MR 0.56 8.02 -0.44 

CanESM5 0.61 7.84 -0.56 

EC-Earth3 0.66 7.87 -0.52 

EC-Earth3-Veg 0.69 7.61 -0.55 

INM-CM4-8 0.35 11.00 -0.49 

INM-CM5-0 0.61 9.93 -0.57 

MPI-ESM1-2-HR 0.61 7.83 -0.47 

MPI-ESM1-2-LR 0.62 7.77 -0.59 
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MRI-ESM2-0 0.51 9.26 -0.57 

NorESM2-LM 0.66 7.97 -0.46 

NorESM2-MM 0.33 11.02 -0.46 

ENSEMBLE 0.72 6.52 -0.51 

 

Result of the model analysis for the region E 

 

MODELS 

                              

                                      E 

CORRELATION 

COEFFICIENT 

RMSE MEAN BIAS 

ERROR 

ACCESS-CM2 0.09 3.60 0.63 

ACCESS-ESM1-5 0.20 3.88 0.62 

BCC-CSM2-MR 0.07 3.20 0.64 

CanESM5 -0.16 4.03 0.64 

EC-Earth3 0.07 3.26 0.62 

EC-Earth3-Veg 0.11 3.27 0.64 

INM-CM4-8 0.16 3.52 0.61 

INM-CM5-0 0.23 3.38 0.65 

MPI-ESM1-2-HR 0.10 3.37 0.64 

MPI-ESM1-2-LR 0.23 3.32 0.63 

MRI-ESM2-0 0.05 3.46 0.65 

NorESM2-LM 0.05 3.73 0.61 

NorESM2-MM 0.11 3.67 0.61 

ENSEMBLE 0.25 2.62 0.63 

 

  

   

   

 

 



  

78 
 

APPENDIX- II 

 

 MATLAB CODE  FOR SEN SLOPE TEST 

b=[]; 

for i=1:size(X,2) 

    b=[b Sen_Slope(X(:,i))]; 

end 

 

MATLAB CODE FOR  PETTITT TEST 
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ABSTRACT 

 Climate change poses a significant threat to human society, causing loss of 

livelihoods, human lives, and biodiversity. It affects climatological variables, leading to 

rising temperatures and precipitation patterns. By the end of the century, global surface 

temperatures could reach 1.4-5.8°C, increasing disaster severity. According to 

Germanwatch 2020 report, India is the seventh-most vulnerable nation to climate 

extremes. Factors such as dense population, diverse climatic regions and huge population 

engagement at agriculture makes India one of the world's most vulnerable countries.  

 Through this study suitable climatic models for the eight different regions 

according to the Koppen’s climatic classification was identified by computing Correlation 

coefficient, Root mean square error and mean bias error.  Future changes meteorological 

variables (precipitation, max and min temperature) simulated from CMIP6 climatic 

models under four shared socioeconomic pathway scenarios (SSP126, SSP245, SSP370 

and SSP585)  were evaluated.   In this work, the future and historic meteorological 

variable’s trend pattern was investigated with Modified Mann-Kendall (MMK) test and 

Sen’s slope test for the entire India for four different climatic seasons (Monsoon, Autumn, 

Winter and Summer). The study identified that, for the upcoming future the precipitation 

and temperature projected increasing trend for all the SSPs. Particularly, SSP 585 case 

projected relatively more increase than the other scenarios. High precipitation as well as 

more variability is the case for the SSP 585 scenario. Projected Monsoon and Autumn 

seasons witnessed more rainfall. Western region of India has more chances of rainfall 

decrease and risk of dry spell. Over all, remarkable variation of meteorological variable 

trend between different regions as well as seasons was witnessed over the considered 

timespan. Moreover the correlation between precipitation and maximum temperature was 

also analysed using the wavelet coherence plot. 

 

 


