KERALA AGRICULTURAL UNIVERSITY
 B.Tech.(Food Technology) 2023 Admission
 I Semester Final Examination - February 2024

Beas 1102
Engineering Mathematics - I (2+0)
Marks: 50
Time: 2 hours
I Fill in the blanks
(10x1=10)

1. $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=$ \qquad
2. An asymptote of a curve is a tangent at \qquad .
3. $e^{\int P d x}$ is called \qquad of the linear differential equation $\frac{d y}{d x}+P y=Q$
4. A differential equation $M d x+N d y=0$ is said to be \qquad if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial y}$
5. The equation $\frac{d y}{d x}+P y=Q y^{n}$ is called \qquad equation.
6. \bar{F} is said to be \qquad If $\nabla . \bar{F}=0$
7. If \hat{R} is the position vector of a point, then $\operatorname{curl} \hat{R}=$ \qquad

Answer the following

8. Define the order of a differential equation.
9. Write the Legendre's differential equation.

1Q. State Divergence theorem.
II Write short notes on ANY FIVE of the following

1. Write the Maclaurin's series expansion of $\sin x$.
2. Evaluate $\lim _{x \rightarrow 0} \tan x \log x$
3. Find the integrating factor of $x \log x \frac{d y}{d x}+y=\log x^{2}$
4. Solve the equation $\left(D^{2}+6 D+9\right) y=0$
5. Find the particular integral (P.I) of $\left(D^{2}+5 D+6\right) y=e^{x}$
6. Find the Wronskian of the functions $y_{1}=e^{x}$ and $y_{2}=e^{-x}$
7. Evaluate div F at the point $(1,2,3)$ given $\hat{F}=3 x^{2} \hat{\imath}+5 x y^{2} \hat{\jmath}+5 x y z^{3} \hat{k}$

III Answer ANY FIVE of the following

(5x4=20)

1. Find the first and second partial derivative of $z=x^{3}-y^{3}+3 a x y$
2. Find the maximum and minimum points of $2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$
3. If $u=x \log x y$, where $x^{3}+y^{3}+3 x y=1$, find $\frac{d u}{d x}$
4. Using method of variation of parameters, solve $\left(D^{2}+4\right) y=\tan 2 x$
5. Derive the value of $J_{\frac{-1}{2}}(x)$
6. Evaluate $\operatorname{div} F$ at the point $(1,2,3)$ given, $\hat{F}=x^{2} y z \hat{\imath}+x y^{2} z \hat{\jmath}+x y z^{2} \hat{k}$
7. Using Green's theorem, evaluate $\int_{c}(y-\sin x) d x+\cos x d y$, where C is the plane triangle enclosed by the lines

IV Write an essay on ANY ONE of the following
($1 \times 10=10$)

1. Verify divergence theorem for \hat{F} taken over the cube bounded by $\mathrm{x}=0, \mathrm{x}=1 ; \mathrm{y}=0, \mathrm{y}=1$; $\mathrm{z}=0, \mathrm{z}=1$ where $\hat{F}=x^{2} \hat{\imath}-z \hat{\jmath}+y z \hat{k}$
2. Find the complete solution of $\left(D^{2}-2 D+2\right) y=x+e^{x} \cos x$
