KERALA AGRICULTURAL UNIVERSITY

B.Tech.(Agrl. Engg.) 2023 Admission

I Semester Final Examination- February 2024
Sacs. 1101
Engineering Mathematics - I (2+1)
Marks:50
Time: 2 hours

Fill in the blanks

(10x1=10)

1. The maximum value of $\sin x+\cos x$ is \qquad .
2. $\lim _{x \rightarrow 0} x^{x}$ is equal to \qquad -.
3. $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(u, v)}=$ \qquad .
4. Gradient of a constant is \qquad .
5. $\operatorname{div}(\phi \mathbf{f})=$ \qquad -.
6. $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$ is equal to \qquad .
Answer the following
7. Which theorem can be used to expand $\log x$ in powers of $x-1$?
8. Find the least value of the function $f(x)=3 x^{4}-2 x^{3}-6 x^{2}+6 x+1$ in the interval $[0,2]$.
9. Define curl of a continuously differentiable vector point function \mathbf{f}.

State True or False

10. $\nabla \times \mathbf{f}$ is a scalar.

II Write short notes on ANY FIVE of the following
(5x2=10)

1. Find the first order partial derivatives of $e^{a x} \sin b y$.
2. If $x=r \cos \theta, y=r \sin \theta$, then find $\frac{\partial(r, \theta)}{\partial(x, y)}$.
3. State Gauss's divergence theorem.
4. Find the asymptote of the spiral $r=\frac{a}{\theta}$.
5. Find grad r^{m}, where r is the distance of any point from the origin.
6. Evaluate $\lim _{x \rightarrow 0} \frac{x e^{x}-\log (1+x)}{x^{2}}$.
7. If $u=x \log x y$, where $x^{3}+y^{3}+3 x y=1$, find $\frac{d u}{d x}$.

III Answer ANY FIVE of the following

1. Expand $\log (1+x)$ using Maclaurin's series.
2. The loop of the curve $2 a y^{2}=x(x-a)^{2}$ revolves about X-axis, find the volume of the solid so generated.
3. Expand the function $\sin ^{-1} \frac{2 x}{1+x^{2}}$ in series form.
4. Find the values of a and b such that $\lim _{x \rightarrow 0} \frac{x(a+b \cos x)-c \sin x}{x^{5}}=1$.
5. If $u=\sin ^{-1} \frac{x+2 y+3 z}{x^{8}+y^{8}+z^{8}}$, find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}$.
6. If $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}, y_{3}=\frac{x_{1} x_{2}}{x_{3}}$, find the Jacobian of y_{1}, y_{2}, y_{3} with respect to x_{1}, x_{2}, x_{3}.
7. Evaluate $\iint_{R} x^{2} d x d y$, where R is the region in the first quadrant bounded by the lines $x=y, y=0, x=8$ and the curve $x y=16$.

IV Write an essay on ANY ONE of the following

$(1 \times 10=10)$

1. Find the volume of the solid obtained by the revolution of the cissoid $y^{2}(2 a-x)=x^{3}$ about its asymptote.
2. Transform the equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ into polar coordinates.
