

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Agrl. Engg.) 2023 Admission I Semester Final Examination- February 2024

Sacs.1101

I

Engineering Mathematics - I (2+1)

Marks:50 **Time: 2 hours**

Fill in the blanks

- The maximum value of $\sin x + \cos x$ is _____ 1.
- 2. $\lim_{x \to \infty} x^x$ is equal to _____.
- $\frac{\partial}{\partial(u,v)}_{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(u,v)} = \underline{\qquad}.$ 3.
- Gradient of a constant is _____. 4.
- 5.
- div $(\phi \mathbf{f}) = _$. $\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$ is equal to _____. 6. Answer the following
- 7. Which theorem can be used to expand $\log x$ in powers of x - 1?
- Find the least value of the function $f(x) = 3x^4 2x^3 6x^2 + 6x + 1$ in the interval 8. [0,2].
- 9. Define curl of a continuously differentiable vector point function **f**. **State True or False**
- 10. $\nabla \times \mathbf{f}$ is a scalar.

Write short notes on ANY FIVE of the following

- Find the first order partial derivatives of $e^{ax} \sin by$. 1.
- If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial(r,\theta)}{\partial(x,y)}$ 2.
- State Gauss's divergence theorem. 3.
- Find the asymptote of the spiral $r = \frac{a}{a}$. 4.
- Find grad r^m , where r is the distance of any point from the origin. 5.
- Evaluate $\lim_{x \to 0} \frac{xe^x \log(1+x)}{x^2}$. 6.
- If $u = x \log xy$, where $x^3 + y^3 + 3xy = 1$, find $\frac{du}{dx}$ 7.

III

II

Answer ANY FIVE of the following

- Expand log(1 + x) using Maclaurin's series. 1.
- The loop of the curve $2ay^2 = x(x-a)^2$ revolves about X-axis, find the volume of 2. the solid so generated.
- Expand the function $\sin^{-1}\frac{2x}{1+x^2}$ in series form. 3.
- Find the values of a and b such that $\lim_{x \to 0} \frac{x(a+b\cos x) c\sin x}{x^5} = 1.$ 4.

(5x2=10)

(5x4=20)

(10x1=10)

- 5. If $u = \sin^{-1} \frac{x+2y+3z}{x^8+y^8+z^8}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$. 6. If $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_3 x_1}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$, find the Jacobian of y_1, y_2, y_3 with respect to $x_1, x_2, x_3.$
- 7. Evaluate $\iint_R x^2 dx dy$, where R is the region in the first quadrant bounded by the lines x = y, y = 0, x = 8 and the curve xy = 16.

IV

Write an essay on ANY ONE of the following

(1x10=10)

- Find the volume of the solid obtained by the revolution of the cissoid $y^2(2a x) = x^3$ 1. about its asymptote.
- Transform the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ into polar coordinates. 2.
