KERALA AGRICULTURAL UNIVERSITY

B.Tech. (Agrl. Engg.) 2022 \& Previous Admissions

II Semester Final Examination - September 2023
Sacs. 1206
Engineering Mathematics - II (2+1)
Marks: 50
Time: 2 hours
1

Choose the correct answer

($10 \times 1=10$)

1. Series $1+r+r^{2}+\cdots \infty$ is
(a) Converges if $|r|<1$
(b) diverges if $|r|<1$
(c) Oscillatory if $|r|<1$
(d) none of these
2. The series $\sum u_{n}$ of positive terms is convergent or divergent as $\lim _{n \rightarrow \infty}\left[n\left(\frac{u_{n}}{u_{n+1}}-1\right)\right]>1$ or <1, then this test is known as \qquad
(a) Comparison test

- (b) Rable'slest
(c) D-Alembert's ratio test
(d) Cauchy's root test

3. The Fourier series expansion of x in the interval $-1 \leq x \leq 1$ with periodic condition has \qquad
(a) only sine terms
(b) only cosine terms
(c) both sine and cosine terms
(d) only sine terms and a non-zero constant.
4. The value of a_{0} in the cosine series expansion of $f(x)=x$ in (0.5) is : \qquad
(a) 2
(b) 3
(c) 5
(d) 10
5. Rational function $f(z)=\frac{3+2 z+z^{3}}{4+5 z+3 z^{3}}$ is \qquad
(a) Analytic
(b) Not analytic
(c) Analytic only when $3+2 z+z^{3}$ does not vanish
(d) Analytic only when $4+5 z+3 z^{3}$ does not vanish.
6. The Fourier Cosine transform of
$f(x)=\left\{\begin{array}{lr}k, & \text { if } 0<x<1 \\ 0, & \text { if } x \geq 1\end{array}\right\}$ is \qquad
(a) $k \sqrt{\frac{2}{\pi}} \frac{\sin s}{s}$
(b) $\sqrt{\frac{2}{\pi}} \frac{\sin i}{s}$
(c) $k \sqrt{\frac{2}{\pi}} \frac{\cos s}{s}$
(d) $\sqrt{\frac{2}{\pi} \cos k s}$
7. The Partial differential equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, c \neq 0$ is known as.
(a) One dimensional heat equation
(b) One dimensional wave equation
(c) Laplace equation
(d) None of these
8. The partial differential equation formed from the expression $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ by eliminating arbitrary constants a and b is. \qquad
(a) $2 z=p x+q$
(b) $2 z=q x+p$
(c) $\quad=\quad=p x+q$.
(d) $\quad=q x+p y$
9. Analytic function with constant modulus is \qquad
(a) Constant
(b) Need not be a constant
(c) depends on the analytic function
(d) None of these.

State True or False

10. "If $f(x)$ is non-periodic and defined in $(-\infty, \infty)$, the Fourier series expansion of $f(x)$ is not pussible".

HI Write short notes on ANY FIVE of the following

1. Examine the convergence of $\sum_{k=1}^{\infty} \frac{4^{k}}{k^{2}}$
2. Find the Fourier sine integral of $f(x)=\left\{\begin{array}{cc}1 & \text { if } 0<x<\pi \\ 0 & \text { if } x>\pi\end{array}\right\}$.
3. Find the half range sine series representation of $f(x)=k$ in $(0, \pi)$
4. Form the partial differential equation by eliminating the arbitrary constants from $z=x y+y \sqrt{x+a}+b$
5. Write down the possible solutions of one dimensional wave equation.
6. Check whether the function $f(z)=e^{x}(\cos y-i \sin y)$ is analytic or not.
7. Evaluate $\int_{C} \operatorname{Re}(z) d z$ where C is the shortest path from $1+i$ to $5+5 i$

III Answer ANY FIVE of the following

($5 \times 4=20$)

1. Examine the convergence of $\sum_{k=1}^{\infty}(-1)^{k+1} e^{-k}$ using alternating series test.
2. Test the convergence of $\sum_{k=1}^{\infty}\left(\frac{2 k+1}{4 k-3}\right)^{k}$
3. Find the Fourier series of $f(x)=x$ in $-\pi<x<\pi$.
4. Prove that an amalytic function of constant real part is constant.
5. Evaluate $\int_{C} \frac{1}{z^{2}+4} d z$ where C is $|z-2|=2$
6. What type of singulatity have the function $f(z)=e^{\frac{1}{z}}$
7. Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$.

IV Write an essay on ANY ONE of the following
($1 \times 10=10$)

1. Solve $\left(m z-n y ; \frac{\partial z}{j x}+(n x-l z) \frac{\partial z}{\partial y}=l y-m x\right.$.
2. Show that $v=(2 x-1) y$ is harmonic and find the corresponding analytic function $f(z)=u(x, y)+i v(x, y)$.

