

Basc. 2209

KERALA AGRICULTURAL UNIVERSITY

B.Tech.(Food Engg. \& Technology)

VIII Semester Final Re- Examination - August 2023 2019 Admission

Numerical Methods for Engineering Applications (1+1)
Marks: 50
Time: 2 hours
I
State True or False
(10x1=10)

1. The Runge-Kutta method is self - starting method.
2. The order of convergence in Newton-Raphson method is 2.

Fill in the blanks
3. Milne's predictor formula is
4. The bisection methods for finding the root of an equation $f(x)=0$ is
5. The order of the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=0$ is
6. In \qquad method, we approximate the curve of solution by the tangent in each interval.
7. Simpson's Rule is used for numerical
8. In the Gauss elimination method for solving a system of linear algebraic equations, triangularization leads to \qquad triangular matrix.
9. The number of significant digits in the number 204.020050 is
10. \qquad is used to denote the process of finding the values outside the interval ($\mathrm{x}_{0}, \mathrm{x}_{\mathrm{n}}$).

II Write short notes on ANY FIVE of the following
$(5 \times 2=10)$

1. If the temperature of a room is $25^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$, find the percentage error.
2. Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using Trapezoidal rule.
3. Find the value of $\int_{1}^{2} \frac{d x}{5+3 x}$ using Simpson's rule.
4. Find the P.I of $y_{n+2}-4 y n+1+3 y_{n}=5^{n}$
5. Use Taylor's series method to $\frac{d y}{d x}=x^{2}+\mathrm{y}^{2}, \mathrm{y}(0)=1$ for $\mathrm{x} \in[0,0.4]$ with $\mathrm{h}=0.2$
6. What are the classifications of the partial differential equations?
7. Write Lagrange's interpolation formula.

III Answer ANY FIVE of the following
(5x4=20)

1. Find by Newton's method, the real root of the equation $3 \mathrm{x}=\cos x+1$
2. Prove that $E \nabla=\Delta=\nabla E$
3. Given $\mathrm{y}_{3}=2, \mathrm{y}_{4}=-6, \mathrm{y}_{5}=8, \mathrm{y}_{6}=9$ and $\mathrm{y}_{7}=17$, calculate $\Delta^{4} \mathrm{y}_{3}$
4. Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for

x	0	1	2	5
y	2	3	12	147

5. Construct the backward difference table for the data

x	-1	0	1	2
$\mathrm{f}(\mathrm{x})$	-8	3	1	12

6. Using Newton's divided difference formula, find the values of $f(2), f(8)$ and $f(15)$ given the following table.

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

7. Solve the difference equation $y_{x+3}-2 y_{x+2}-y_{x+1}-2 y_{x}=0$
8. Using Taylor series method, find, correct to four decimal places, the value of $y(0.1)$, given $\frac{d y}{d x}=x^{2}+y^{2}$ and $y(0)=1$
9. Given $y^{\prime}=x^{3}+y, y(0)=2$, compute $y(0.2), y(0.4)$ and $y(0.6)$ using the Runge-Kutta method of fourth order.
