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CHAPTER-I  

INTRODUCTION 

Water is the most essential natural resource which supports life on the globe 

and it is one of the principal elements which influences the economical, industrial 

and agricultural growth of human beings. Ever increasing demands of water for 

irrigation, domestic, industrial and livestock sectors have created water scarcity 

worldwide. Groundwater is the only reliable source of water, which is becoming 

scarce in almost all parts of hard rock terrain of the country. There are many reasons 

for this condition such as over exploitation of groundwater, decrease in infiltration 

rate, deforestation etc. The significance of water can be seen in all sectors as the 

demand and needs are growing exponentially. Groundwater represents the 

terrestrial subsurface component of the hydrologic cycle. Since groundwater is 

generally in motion, it moves from higher-elevation recharge locations to lower-

elevation discharge areas. Groundwater is estimated to make up around 30% of the 

world's fresh water, followed by surface water (0.3%), atmospheric water (0.04%), 

and ice (70%) (GEC, 2015).  

Groundwater is very important for India’s agriculture and drinking water 

security in urban and rural areas. The 90% of domestic use in rural areas is relied 

on groundwater whereas 70% of the water used in agriculture is drawn from 

aquifers. Groundwater accounts for 50% of urban water usage. In the case of the 

industrial sector, unregulated groundwater may result in serious inter-sectoral 

disputes. Therefore, India's ability to manage groundwater resources, particularly 

the aquifer in various parts of the country, is crucial to the growth of both agriculture 

and industry. There is currently a serious groundwater crisis in India as a result of 

excessive groundwater extraction and contamination, which affects nearly 60% of 

the country's districts and poses a threat to the population's access to safe drinking 

water (GEC, 2015). 

Drought is an extreme natural hazard caused by a temporary shortage of 

water availability that lasts for a long time. Drought has been divided into 

meteorological, hydrological, agricultural, and socioeconomic droughts based on 
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the availability of water in various water resource sectors (American 

Meteorological Society, 2004). The groundwater drought is a hydrological drought 

category that deals specifically with the characteristics of groundwater resources 

and can be assessed using groundwater recharge, discharge, levels, and volume. 

Lack of groundwater recharge or a lack of groundwater expressed in terms of 

storages or groundwater heads in a specific area and over a specific period of time 

are two definitions of groundwater drought (Lanen and Peters, 2000). A 

groundwater drought begins with a decline in recharge brought on by a lack of 

rainfall, which causes the water table to sink and exhausts all available groundwater 

reserves. The groundwater drought is, however, made worse by excessive pumping 

(Mishra and Singh, 2010 and Gleeson et al. 2012) 

Groundwater level is an indication of groundwater flow, availability of 

groundwater and aquifer's or groundwater system's physical properties. Any event 

that causes an aquifer's pressure to change will cause the groundwater level to alter. 

The quantity of storage, the amount of discharge and recharge, the variance of 

stream stages, and evaporation all can affect the groundwater level. Hence, 

understanding the groundwater level variability and trend is crucial for water 

resource planning in a region. 

The method for trend evaluation of groundwater level is an efficient tool for 

groundwater conservation measures. Time-series analysis is used in groundwater 

trend assessment and to provide a greater knowledge of long-term changes in 

groundwater levels. It can assist in figuring out whether an aquifer's groundwater 

storage is steady, increasing, or decreasing. Several researchers have evaluated how 

groundwater levels have changed over time using trend analysis approaches (Patle 

et al., 2015). 

 Natural and human activities both have an impact on groundwater systems; 

therefore, targeted and ongoing management is required to keep these conditions 

within acceptable bounds while achieving the desired economic and social 

advantages. Groundwater management and policy decisions must be based on 

knowledge of the past and present behaviour of the groundwater system, the 
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probable response to changes in the future, and the degree of uncertainty in those 

responses. Groundwater modelling is an effective technique for managing water 

resources, protecting groundwater, and remediation. Before starting a project or 

carrying out a remediation, decision-makers utilise models to forecast how a 

groundwater system would behave. Any computational technique that represents an 

approximation of an underground water system is referred to as a groundwater 

model. Although groundwater models are by definition a simplification of a more 

complicated reality, they have shown to be effective tools for addressing a variety 

of groundwater issues and assisting the decision-making process throughout the 

course of several decades. Population growth and industrialisation have raised the 

demand for water supplies. Furthermore, groundwater recharge is being impacted 

by the shift in land use pattern caused by urban development. Hence, accurate 

groundwater forecasting has become essential for effective groundwater resource 

development. 

 For forecasting groundwater table depth, numerous models have been 

created and used till date. These models can be divided into two categories: physical 

descriptive models and empirical time series models. The empirical time series 

models have been frequently employed for water table depth modelling. The main 

drawback of empirical approaches is that they are inadequate for forecasting when 

the hydrological system's dynamical behaviour changes over time (Bierkens, 1998). 

The relationships between precipitation, canal releases, and groundwater level in an 

aquifer's water table are probably not linear but rather nonlinear, and the models 

that try to approximate these relationships in linear form fail to accurately capture 

these relationships. Very few truly non-linear empirical models, such as stochastic 

differential equation and threshold autoregressive self-extracting open-loop 

models, have been reported for shallow water table modelling due to the challenges 

associated with identifying non-linear model structure and parameter estimation 

(Bierkens, 1998). Artificial neural networks (ANNs) have been employed in many 

branches of science and engineering recently for forecasting. ANNs have been 

proven to be effective in modelling virtually any nonlinear function to an arbitrary 

degree of accuracy. The key benefit of this approach over conventional methods is 
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that it does not require the explicit mathematical formulation of the complicated 

nature of the underlying process under investigation. This makes ANN an appealing 

technique for simulating changes in the water table. 

ANN is a mathematical model that simulates functioning of a nerve cell. 

Without knowing how the input and output are physically connected, ANN may 

recognise the relationship between them. The best architecture of an ANN model is 

one that retains a simple and compact structure while producing the least amount 

of error possible based on performance indicators (Tawfik et al., 1997). The critical 

component of a good ANN architecture is the number of hidden layers and the 

number of neurons in each hidden layer. ANN models produce approximate and 

near solution to such non-linear phenomenon.     

Once the groundwater level is modelled, it is easy to assess the groundwater 

drought condition of a region. Drought indices are true communication tools to 

quantify the drought severity, magnitude, duration, frequency and spatial extent. 

Standardized Groundwater Level Index (SGI), is a new drought index developed 

by (Bloomfield et al., 2013). The SGI proves that the occurrence of drought events 

is reflected in changes in the groundwater level (NIDIS, 2021).  

Kalpathypuzha, sub-basin of Bharathapuzha coming under Palakkad district 

of Kerala is a severe drought prone area. The area contains over-exploited, critical 

and semi critical classes of groundwater exploited areas of the district. Ground 

water development in some parts of the area has reached to a critical stage resulting 

in decline of ground water levels, thus there is need to adopt an integrated approach 

of development of ground water resources. In view of the above facts a study was 

taken up in Kalpathypuzha with the following specific objectives: 

1. To analyze the groundwater level variability and trend during 2007-2021 

period. 

2. To develop an ANN model for groundwater level prediction. 

3. To generate spatio-temporal groundwater drought map of the basin. 
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 CHAPTER-II   

REVIEW OF LITERATURE 

 Groundwater is among the most precious and significant sources of water 

worldwide and is essential to various facets of human existence, including 

agriculture, the growth of industry, and the provision of drinking water (Qadir et 

al., 2007). Understanding the effects of both natural and human-made factors on 

groundwater reserves (and exploitation) is crucial for developing appropriate 

management strategies to deal with unsustainable use (Tillman and Leake, 2010). 

The availability and accessibility of groundwater can be measured directly and 

easily using the groundwater level (Tao et al., 2020). The understanding of 

groundwater level variability and trend is crucial for water resource planning in a 

region. Groundwater level fluctuation is a non-linear phenomenon. Artificial Neural 

Networks (ANN) proves to be one of the best tools for modelling non-linear 

relationship between input and output datasets in hydrology (Dawson and Wilby, 

1999). Once the groundwater level is modelled, it is easy to assess the groundwater 

drought condition of a region. Drought indices are trusted tools for communicating 

the extent, magnitude, frequency, and severity of droughts. The Standardized 

Groundwater Level Index (SGI) demonstrates how alterations in groundwater 

levels correlate with the instances of drought events (NIDIS, 2021). This chapter 

briefly summarises the previous research works conducted with respect to 

variability and trend of groundwater level, prediction of groundwater level using 

physical, empirical and machine learning techniques and groundwater drought 

assessment using various indices. The details are reviewed under the following sub 

heads: 

1. Variability and trend analysis of groundwater level  

2. Groundwater level prediction using physical and empirical models 

3. Groundwater level prediction using machine learning models 

i. Application of ANN models 

ii. Fuzzy logic and neuro-fuzzy model’s applications 
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iii. Kernel model’s applications 

iv. Hybrid model’s applications 

4. Groundwater drought assessment using various indices 

2.1  VARIABILITY AND TREND ANALYSIS OF GROUNDWATER LEVEL  

 

Shamsudheen et al. (2009) used a nonparametric seasonal-trend 

decomposition approach (STL) to observations obtained from 1985 to 2005 in 

Bangladesh to resolve trend and seasonal components in weekly groundwater levels 

in the Ganges-Brahmaputra-Meghna (GBM) Delta. Although seasonal variation in 

groundwater levels predominates, declining groundwater levels (>1 m/yr) have 

been observed in urban and peri-urban areas near Dhaka as well as in the north-

central, north-western, and south-western regions of the nation (0.1-0.5 m/yr), 

where intensive groundwater abstraction is being done for dry-season rice 

cultivation. In the estuarine and southern coastal zones, groundwater levels are 

rising (0.5–2.5 cm/yr). 

By using the non-parametric Mann-Kendall trend test and Sen's slope 

estimator, Bui et al. (2012) identified trends in groundwater level (1995–2009) in 

57 wells in the Holocene unconfined aquifer and 63 wells in the Pleistocene 

confined aquifer. 17 time series (such as yearly, seasonal, and monthly) generated 

from the original data were examined at each well. According to an analysis of the 

yearly groundwater-level averages, 35% of the wells in the unconfined aquifer had 

tendencies towards decline, while 21% had trends towards increase. Contrarily, 

groundwater levels in constrained aquifers showed decreasing trends practically 

everywhere. Strongly falling trends (>0.3m/year) were mostly identified in 

metropolitan areas around Hanoi, where groundwater is actively being extracted, 

according to spatial distributions of trends. 

In order to estimate the pre- and post-monsoon water levels in the Haryana 

district of Karnal, Patle et al. (2015) used the Mann-Kendall test and Sen's slope 

estimator to identify patterns in pre- and post-monsoon groundwater levels. The 

findings revealed that the groundwater levels had decreased drastically between 
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1974 and 2010. The average rates of water level fall during the pre- and post-

monsoon seasons were 0.228 and 0.267 m/year, respectively. 

Gibrilla et al. (2017) employed non-parametric tools such the Mann-

Kendall test, Sen's slope estimator, and ARIMA models to analyse trends in rainfall, 

temperature, and groundwater levels in the Upper East Region of Ghana during the 

period from 2005 to 2014. The average depth of groundwater (below the surface of 

the ground) in Gowrie, Bawku, and Kabingo varied between 1.24 and 5.46 m, 

which was a smaller variation than Datoku and Bongo. Every well in the research 

area except Kabingo, showed rising seasonal trends according to both the Mann-

Kendall and Sen's slope estimators. The Kabingo well displayed a seasonal decline 

of 0.312-0.097 m/year. Yet, none of the monitoring wells observed any appreciable 

upward or downward trends in groundwater levels on an annual basis. 

Kumar et al. (2018) applied non-parametric techniques to assess the trends 

in groundwater level. Modified Mann-Kendall and Sen's slope estimator at 

significance level of 5% were used for the groundwater level during the period from 

1998 to 2012 at 13 sites in the Uttar Pradesh, India, districts of Hardoi, Laxmipur, 

Lucknow, and Sitapur. The trend in groundwater levels revealed negative values 

for 7 places spanning 54% of the area, and positive values at six sites covering 46% 

of the area in the pre-monsoon season. However, in the post-monsoon period, 9 

sites spanning 69 percent of the area demonstrated positive patterns, whereas 4 

locations covering 31% of the area displayed negative trends. Recharge by rainfall 

in the post-monsoon season might be responsible for the variation in water level 

trends between the two distinct seasons.  

Ndlovu and Demlie (2018) reported the findings of analysis of groundwater 

level variations and their association with rainfall in South Africa's KwaZulu-Natal 

(KZN) Province. 15 rainfall stations and 32 groundwater level monitoring locations 

dispersed throughout the region were employed for the study. The Mann-Kendall 

test was employed at a 10% significance level to investigate whether there were any 

trends in the groundwater level and rainfall data. Sen's slope estimator was used to 

assess the trend's slope. To better understand the cause-and-effect relationship 
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between rainfall and changes in groundwater level, cumulative rainfall departure 

(CRD) was determined at each individual rainfall station influencing the 

groundwater monitoring site. The findings indicated a varying, but generally 

decreasing trend. 

Pathak and Dodamani (2019) examined groundwater level trends and 

evaluated regional groundwater drought characteristics in India's drought-prone 

Ghataprabha river basin. Groundwater level fluctuations during the monsoon (June 

to September), post-monsoon (October to December), winter (January to February), 

pre-monsoon (March to May), and annually (January to December) have been 

evaluated using the nonparametric Mann-Kendall test at a significance threshold of 

a = 0.05. A significant decreasing trends were seen in more than 61% of wells with 

an average loss of 0.21 m during the course of all seasons. This could be attributable 

to either declining precipitation or intensive exploitation of groundwater, or even 

both. 

Kumar and Rathnam (2019) investigated the monthly, yearly, and seasonal 

groundwater fluctuation patterns of the forty observation wells were used in the 

Warangal district (2000–2015) for four non-parametric Mann-Kendall approach 

variations. With the help of the Sen's slope estimator, trend magnitudes were 

calculated. According to the findings, three observation wells on a monthly time 

series showed substantial positive trends (positive Z-statistics), while other wells 

among forty showed significant negative trends. The monthly, seasonal, and annual 

median trend slopes for groundwater levels were all negative. A decreasing trend 

in the seasonal trend slope was seen in pre-monsoon season. The annual variation 

in trend slope ranged between -0.4 and +0.4 millimetres per year. 

Halder et al. (2020) investigated groundwater degradation to examine the 

seasonal trend in their groundwater levels using Mann-Kendall test statistics 

between 1996 and 2018. For that twenty wells from a river basin in West Bengal 

was chosen It was found that 60 percent of wells showed a drop in water level, 

especially in the post-monsoon season. According to a socio-economic survey, 

these wells were mostly situated close to agricultural land where there was 
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substantial groundwater extraction using submersible pumping wells. The amount 

of recharge following monsoonal precipitation is indicated by the groundwater level 

increase in post-monsoon period. 

Nygren et al. (2021) studied the association between groundwater storage 

and hydro climate in Sweden and Finland, an area with a temperate and cold 

climate. Two regional and one global reanalysis datasets were used in the study to 

examine annual, frost-free season and frost season temperature and precipitation 

changes in the climate regions. groundwater level trends for the same time period 

between 1980 and 2010 were compared to the trends in effective precipitation and 

rainy-day frequency. Sen's slope and the Mann-Kendall test were used to calculate 

trends. groundwater levels in southern Finland and south-eastern Sweden were 

dropping significantly, while groundwater levels in south-western Sweden were 

substantially rising. According to the findings, trends in the frost season have no 

relation on annual groundwater level trends in southern Finland and are only related 

to rainy day frequency and effective precipitation patterns during that season. 

Groundwater level trends in southern Sweden seem to be correlated with yearly and 

frost-free season trends in effective precipitation. 

Noori and Singh (2021) applied the nonparametric Mann-Kendall test at a 

significance level of 0.05 to evaluate seasonal spring (Mar to May), summer (June 

to Aug), fall (Sept to Nov), winter (Dec to Feb), and annual trends of groundwater-

table for all observation points, which is a part of the Kabul basin of Afghanistan. 

Before integrating the seasonal and annual groundwater level data in the Mann-

Kendall trend-test, an autocorrelation test was performed. The annual and seasonal 

groundwater level revealed significant trend. Only six of the sixty-six observational 

wells with annual groundwater levels exhibit increasing trends, the remaining sixty 

wells show falling trends, frequently with considerable trends. 

Gautam et al. (2021) conducted statistical analysis and geospatial 

technology to investigate the trend in groundwater level in the Jakham River basin 

of southern Rajasthan. The Mann-Kendall statistical test was used for the water 

level trend analysis in 75 wells. According to trend analysis statistics, a relatively 
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small percentage of wells show a fall in water level during the post-monsoon 

season, while 15% of wells experienced it during the pre-monsoon. Pre-monsoon 

water level reduction averaged 0.245 m/a, and post-monsoon water level decline 

averaged 0.05 m/a. The potential to recharge the aquifer was also declining 

annually. 

Fu et al. (2022) used three trend analysis methods to figure out the annual 

mean, minimum, and maximum depth to water table (DTW) trends in 910 bores 

over the long term (1971–2021). This study was conducted in eight major alluvial 

systems of Australia's Murray-Darling Basin (MDB), which concentrated nearly 75 

percent of groundwater use.  The findings demonstrated (a) an overall increasing 

trend in DTW across alluvial aquifers, which could be attributed to changes in 

groundwater extraction and recharging from rainfall; (b) similar statistical 

significances and magnitudes were shown by the analysis methods employed; (c) 

Annual maximum DTW had a bigger trend magnitude than mean DTW, while 

annual lowest DTW had a smaller trend magnitude; (d) Groundwater patterns were 

consistent with trends in the quantity of production bores, potential evaporation, 

and yearly rainfall; (e) Irrigation was partially responsible for the downward trend 

in groundwater level. 

Swain et al. (2022) presented the trend in groundwater levels in three 

districts of India's Jharkhand State viz, Purbi Singhbhum, Ranchi, and Saraikela. 

The depth to groundwater level (DGWL) data from twenty four wells in the three 

districts from 1996 to 2018 for the pre and post-monsoon seasons were gathered. In 

this investigation, Innovative Trend Analysis (ITA) was used to examine 

groundwater level trends. The findings showed a considerably rising trend in 

DGWL for 14 sites during the post-monsoon season and 17 sites during the pre-

monsoon season. The growing DGWL patterns in majority of the locations 

indicated a significant fall in groundwater levels over time. 
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2.2 GROUNDWATER LEVEL PREDICTION USING PHYSICAL AND 

EMPIRICAL MODELS 

 

Chen et al. (2002) based on a water budget model and a groundwater flow 

model, developed an empirical model that links climatic variables to groundwater 

level. An incomplete data set comprising historical records of water levels from 

more than 80 wells in a monitoring network for the carbonate rock aquifer in 

southern Manitoba, Canada, was utilised to evaluate the empirical model. The 

results of the tests revealed that for the most part, the predicted and observed 

groundwater levels were very similar. In general, there was a 0.92 

average corelation coefficient between the projected and observed water levels. A 

climate change impact assessment could employ the proposed empirical statistical 

model to predict changes in groundwater level in response to various climate 

scenarios. 

39 piezometric wells monitored over a 12-year period by Ahmadi et al. 

(2007) underwent geographical and temporal investigation of monthly groundwater 

level changes. Many scholars have employed geostatistics, which has been 

presented as a management and decision-making tool, to expose the geographical 

and temporal structure of groundwater level variation. The findings demonstrated 

that extremely weak nugget impacts caused groundwater level variations to have a 

substantial geographical and temporal pattern. Groundwater level fluctuations have 

a temporal pattern, according to a temporal analysis that also revealed a significant 

structure of groundwater level decline across the research region. Groundwater 

level decline and groundwater level fluctuations were understated by 3% and 6% 

for geographical and temporal analysis, respectively, according to results of 

ordinary and universal krigings. 

In the dry and semi-arid regions of western Jilin province of China, Yang et 

al. (2009) employed Integrated Time Series (ITS) and Back-Propagation Artificial 

Neural Network (BPANN) models to empirically estimate groundwater level. On 

the basis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 

coefficient of efficiency (CE), the modelling procedure and accuracy of these two 
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methodologies were investigated. The simulation results showed that the CE is 0.98 

and 0.97, respectively, and that both ITS and BPANN are accurate in replicating 

(fitting) the groundwater levels. The BPANN model outperformed the ITS in 

forecasting the time series for groundwater levels, according to a comparison of the 

prediction accuracy of the two models during the validation phase.. 

Mohanty et al. (2012) assessed the effectiveness of the finite difference-

based numerical model MODFLOW and ANN model in simulating groundwater 

levels in the Kathajodi-Surua Inter-basin of Odisha. The MODFLOW was 

calibrated using weekly groundwater level data for two years and four months 

(February 2004 to May 2006), and the model was validated using data for one year 

(June 2006 to May 2007). The model was calibrated using a combination of the 

automated calibration technique and the trial-and-error method, with a mean RMSE 

(root mean squared error) value of 0.62 m and a mean NSE (Nash-Sutcliffe 

efficiency) value of 0.915. For the validation period, groundwater levels at 18 

monitoring wells were simulated. In addition, ANN models for 18 observation wells 

in the basin were created to forecast groundwater levels one-time step (or week) 

ahead. The input variables to the ANN model were weekly rainfall, evaporation, 

river stage, water level in the drain, tube well pumping rate, and groundwater levels 

in these wells at the previous time step. The observed groundwater levels and the 

predicted groundwater levels produced by the MODFLOW and ANN models were 

compared. The ANN model outperformed the numerical model in predicting 

groundwater levels in the research area for forecasts with short time horizons. 

Devarajan and Sindhu (2015) compared the effectiveness of the 

MODFLOW-based numerical model and the Radial basis Function Neural Network 

(RBFNN) machine learning model for predicting groundwater levels in the 

Trivandrum district's Athiyannoor Block Panchayath, which is designated as a 

semi-critical zone due to the rapid drop in groundwater level. Weekly groundwater 

level data from January 2014 to December 2014 were used to create the 

groundwater flow model. The groundwater levels at ten observation wells were 

simulated to calibrate the model using the trial-and-error method. The groundwater 



13 
 

levels were forecasted and validated using the simulated model between January 

2015 and March 2015. The inputs to the RBFNN model were weekly groundwater 

recharge, evapotranspiration, the rate at which the pumping wells are being 

pumped, and the groundwater levels in these wells at the previous time step. The 

trained RBFNN model was then validated. During the validation period, the 

predicted groundwater levels by the numerical model and RBFNN models were 

compared with the actual groundwater levels. The performance characteristics of 

both models showed that the RBFNN model performed better for forecasting 

weekly groundwater levels than a numerical model utilising MODFLOW. 

A comparison study between a physical model and a phenomenological 

model was undertaken by Wei et al. (2020) in order to determine which approach 

would be more effective for predicting groundwater levels in relation to deep-seated 

landslides. The physical model was a finite-element seepage code named Slide by 

Rocscience. A Support Vector Machine with Particle Swarm Optimization (PSO-

SVM) served as the phenomenological model. The physical seepage model's input 

parameters were calibrated using trial and error method to compare the computed 

results with real monitoring data in order to acquire more accurate calculated results 

from the physical seepage model. To get more precise calculated results, the 

phenomenological model's input data were additionally processed. The outcomes 

demonstrated that the physical seepage model performed poorly because it was hard 

to calibrate correctly under the conditions of limited data. The phenomenological 

model outperformed the other models, according to the validation results. The 

RMSE and MAE of physical seepage model were 0.92 m and 0.81 m, and that of 

the phenomenological models were 0.052 m and 0.043 m, respectively. 

Yin et al. (2021) used the Australian state of Victoria as a case study to 

compare and contrast how well machine learning and physical models predicted 

groundwater dynamics. Groundwater levels were predicted using two traditional 

machine learning models (Random Forest (RF) and A NN) plus a deep learning 

model (Long Short-Term Memory, LSTM). The groundwater level estimations 

were compared with the in-situ groundwater level observations from ground 
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networks and the simulated groundwater storage from two different physical 

models, World-Wide Water (W3) and Catchment Land Surface Model with 

GRACE data assimilation (CLSM-DA). The evaluation demonstrated that LSTM 

greatly outperformed machine learning models in terms of accuracy, with increases 

in Pearson coefficient (PR) values of 23.89% (compared to ANN) and 41.32% 

(compared to RF) respectively during the prediction period. Since the CLSM-DA 

groundwater levels products outperformed the W3 model in terms of accuracy, this 

proved the value of incorporating GRACE data into land surface models. Also, the 

results indicated that in plain terrain, the LSTM model had higher accuracy. 

The main drawback of empirical and physical models is that they are 

insufficient for forecasting when the hydrological system's dynamical behaviour 

changes over time (Bierkens, 1998). The relationships between precipitation, canal 

releases, and groundwater level in an aquifer's water table are probably not linear 

but rather nonlinear, and models that try to approximate these relationships in linear 

form fall short of accurately capturing these relationships. Few really non-linear 

empirical models, such as threshold autoregressive self-extracting open-loop 

models and stochastic differential equations, have been described for shallow water 

table modelling due to the difficulties in detecting non-linear model structure and 

parameter estimation (Bierkens, 1998). In recent years, machine learning 

techniques have been used for forecasting in many areas of science and engineering. 

ANNs have been proven to be effective in modelling successfully any nonlinear 

function to an arbitrary level of accuracy. 

2.3 GROUNDWATER LEVEL PREDICTION USING MACHINE LEARNING 

MODELS 

2.3.1 Application of ANN models 

 

Daliakopoulos et al. (2004) examined the performance of different neural 

networks in groundwater level forecasting in Messara Valley in Crete (Greece), 

where groundwater resources had been overexploited during the previous fifteen 

years and the groundwater level had been steadily declining, in order to identify an 
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optimal ANN architecture that could simulate the decreasing trend of the 

groundwater level and provide acceptable predictions up to 18 months ahead. A 

typical feedforward neural network trained with the Levenberg-Marquardt 

algorithm yields the best results for up to 18 months of forecasts when seven 

different types of network designs and training techniques are examined and 

compared. 

Nayak et al. (2006) investigated the use of ANN for groundwater level 

forecasting in shallow aquifers in India. The water levels of two observation wells 

had been predicted, up to six months ahead using various ANN models. The 

outcomes demonstrated that ANNs were an effective technique for predicting 

monthly groundwater levels. For one month ahead prediction of groundwater 

levels, the performance assessment parameters (RMSE, coefficient of correlation) 

were found to be reliable and consistent. The forecast error was also within a 

reasonable range. Even though good results were obtained for Munganda 

observation well for forecasts up to 4 months in advance, the model performance 

for Cheyyeru observation well was observed to degrade after a 2-month lead 

forecast. 

Jothiprakash and Suhasini (2008) developed an artificial neural network 

model (ANN) to predict the groundwater level fluctuation in an observation well in 

Sri Ram Reservoir Project, Andhra Pradesh, India. The ANN model, configured 

with back propagated algorithm, single hidden layer, and tanh activation function. 

The ANN models were assessed on the basis of statistical performance criteria 

namely, mean square error, root mean square error and correlation coefficient. The 

result showed that the best correlation coefficient obtained was 0.76, while on the 

basis of other two performance indicators, the model results were promising. The 

study revealed that ANN model could be used to predict the groundwater level 

fluctuations within reasonable accuracy. 

Sreekanth et al. (2009) conducted research on the use of ANNs for 

groundwater level forecasting. The effectiveness and accuracy of the model were 

evaluated based on root means square error and regression coefficient. The root 
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means square error and the regression coefficient were 0.93 and 4.50 respectively. 

It was found that a typical feed forward neural network that had been trained using 

the Levenberg-Marquardt algorithm was able to make the precise predictions. 

Mayilvaganan and Naidu (2011) developed Feed-Forward Network based 

Artificial Neural Network (ANN) model to predict the groundwater levels in hard 

rock region. Model was trained using back propagation algorithm with two hidden 

layer, and log-sig activation function. The models were evaluated using three 

statistical performance criteria namely, mean average error (MAE), root mean 

squared error (RMSE) and regression coefficient (R). The most suitable 

configuration of the ANN structure was found to be 12-20-1 feed forward network 

trained with the Levenberg– Marquardt function. This configuration showed the 

most accurate predictions of the decreasing groundwater levels in the study area. It 

was also concluded that A NN could be used to predict groundwater level in a hard 

rock region with good accuracy even with limited data. 

In dry and semi-arid environments, Mirzavand et al. (2014) suggested 

ANNs to predict groundwater levels (Kashan plain aquifer, Iran). Rainfalls, rivers, 

spring discharges (as aquifer recharge components) and transitional water resources 

from other basin, evaporation, and aquifer discharges were taken as input variables, 

and the output was groundwater levels of Kashan plain aquifer in five clusters of 

36 Piezometric wells. Simulated groundwater levels were compared with actual 

groundwater of all clusters in the study area. The results demonstrated an excellent 

fit between the calculated and observed data. 

Chitsazan et al. (2015) investigated the forecasting of groundwater level 

using ANNs as an alternative for groundwater modelling. Departure with 

momentum (GDM), Levenberg-Marquardt (LM), resilient back propagation (RP), 

and scaled conjugate gradient (SCG) were the four different techniques employed 

for modellingk. The input layer was made up of rainfall, evaporation, relative 

humidity, temperature, irrigation canal discharge, and groundwater recharge from 

the plain boundary, while the output layer was made up of the future groundwater 

level. The effectiveness of ANN's prediction was examined using statistical 
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analysis in terms of Mean-Square-Error (MSE) and correlation coefficient (R). In 

the current investigation, the FFN-LM algorithm produced the best results across 

all three hydrogeological groups. 

Djurovic et al. (2015) compared the performance of Artificial Neural 

Network (ANN) and Adaptive Neuro-Fuzzy Interference System (ANFIS) for 

forecasting one month ahead water table at various wells situated at different 

distance from the Danube River. The performance criteria such as root mean 

squared error (RMSE), coefficient of determination (𝑅2), and coefficient of 

efficiency (COE) were used to compare the performance of two techniques. The 

result of the study revealed that each of the studied techniques could be considered 

as useful tool for hydrological process modelling in water resource engineering. 

Lohani and Krishan (2015) conducted research on the application of ANNs 

for groundwater level simulation in Amritsar and Gurdaspur Districts of Punjab, 

India. Different network designs and training procedures were researched and 

compared for forecasting the model’s efficiency and accuracy. The results 

demonstrated that accurate forecasting was possible, with the standard feed forward 

neural network trained with Levenberg-Marquardt algorithm and showed best 

performance. From the analysis, it was concluded that the accuracy of the ANN 

model in forecasting groundwater level was inside acceptable limits. 

Nair and Sindhu (2016) conducted a study for estimating the groundwater 

level in the Mamom river basin in the Trivandrum region, India. They developed 

an ANN model based on hydrological factors for the purpose of estimating the 

groundwater level in three wells during monsoon and non-monsoon seasons. Only 

four meteorological variables—rainfall (Raf), potential evapotranspiration (EVP), 

temperature (T), and humidity (H%)—were used to build the predictive models. 

The Levenberg-Marquardt (LM) algorithm was used to train a number of ANN 

model structures in order to select the weight and bias values in the best way 

possible. The outcomes demonstrated that, in comparison to other methods, an 

ANN using the LM back-propagation algorithm offered more accurate predictions. 

Hong (2017) conducted a study using a feed-forward back-propagation 

neural network (FFBPNN), that estimated hourly groundwater level with the 
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intention of achieving two main goals: (1) predicting next hour groundwater level 

and (2) forecasting the fluctuations and changes in groundwater level between the 

current and one-lag-ahead groundwater level. The results showed that the suggested 

model was able to mimic groundwater level changes between lags more accurately 

than one lag-ahead groundwater level prediction. 

Shamsuddin et al. (2017) used ANNs to anticipate groundwater levels by 

combining river recharge and river bank infiltration. Daily rainfall, river stage, 

water level, stream flow rate, temperature, and groundwater level were taken as 

input variables to ANN models. To predict the fluctuation of groundwater tables, 

two different types of ANNs structures were applied, and the best forecasting results 

were compared. The coefficient correlation (R), mean square error (MSE), root 

mean square error (RMSE), and coefficient determination (R2) were the selection 

criteria for the best model. Two pumping experiments were carried out, and it was 

discovered that the first test had a better performance criterion and provided an 

accurate projection of the groundwater level. 

Yadav et al. (2017) employed the Extreme Learning Machine (ELM) and 

Support Vector Regression (SVR) models to conduct a study for the prediction of 

groundwater level in Canada. Both forecasting models were created using inputs 

from the hydrological and meteorological data. The outcomes demonstrated that 

ELM outperformed SVR in monthly groundwater level forecasting. 

Lee et al. (2019) used an (Feed Forward Artificial Neural Network) FFANN 

model to predict hourly groundwater level at eight wells in South Korea. The study 

used groundwater abstraction and surface water level as input variables. The 

suggested model was thought to be effective in capturing the non-linear connection 

between the targets and predictors because the predicted groundwater level values 

were quite precise and in line with the actual magnitudes of groundwater level. 

In order to determine the monthly groundwater level in four aquifers of the 

Nebhana watershed, in Tunisia, Africa, Nouiri and Derbela (2020) developed an 

ANN model. To create the forecasting models, only three input parameters viz, 

rainfall, antecedent groundwater level, and evaporation were used. The ANN model 

was able to capture the dynamic fluctuations in piezometric values and provided 
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predictions with a greater degree of accuracy. According to the study, the monthly 

groundwater level was mostly dependent on the monthly precipitation, evaporation, 

and antecedent values of groundwater level. 

Hasda et al. (2020) implemented a non-linear autoregressive model with 

exogenous inputs (NARX) of ANN in order to simulate groundwater level and 

predict its weekly level up to 52 weeks in advance at 14 Permanent Hydrograph 

Stations (PHSs) in the drought-prone Barind Tract in the northwest of Bangladesh. 

To forecast groundwater level, the weekly historical time series climatological data 

from 1980 to 2017 were utilised as input variables (rainfall, temperature, humidity, 

and evaporation). There was a relatively good fit between predicted and observed 

groundwater level in a selected PHS. Hence, they concluded that  this methodology 

could be simply used for groundwater planning and management aspects in water 

scarce areas. 

2.3.2 Fuzzy logic and neuro-fuzzy model’s applications 

 

Emamgholizadeh et al. (2014) conducted in-depth research and compared 

the effectiveness of Adaptive Neuro Fuzzy Inference System (ANFIS) and Feed 

Forward Neural Network (FFNN) models in simulating groundwater level in 

various parts of the world. They claimed that when using either only antecedent 

groundwater level or meteorological data along with antecedent groundwater level 

as inputs, ANFIS was preferable to the FFNN model for groundwater level 

prediction. 

Khaki et al. (2015) modelled the monthly groundwater level measured at 

the Langat Basin located in the southeast of Malaysia’s Selangor state. There were 

many regressors employed, including prior groundwater level, precipitation, 

evaporation, relative humidity, maximum temperature, and min temperature. 

Adaptive Neuro Fuzzy Inference System (ANFIS), Feed Forward Neural Network 

(FFNN), and the Cascade Forward Network (CFN) were the three models 

employed. R and MSE were used to analyse their performances. The findings 
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revealed that among the different models used the ANFIS model had much superior 

accuracy with R2 = 0.94 and MSE = 0.005. 

Raghavendra and Deka (2016) suggested the multi-step-ahead forecasting 

of monthly groundwater level utilising Adaptive Neuro Fuzzy Inference System 

(ANFIS) and Gaussian Process Regression (GPR) techniques in the river basin near 

Sullia Taluk, India. The groundwater level measured in the preceding four months 

was one of four input factors that were used to predict groundwater level, up to six 

months in advance. The findings demonstrated that the GPR model outperformed 

the ANFIS model in terms of prediction accuracy. It was also demonstrated that the 

performances of the two models (i.e., ANFIS and GPR) decreased from one to three 

months ahead prediction. 

Zhang et al. (2017) analysed the differences in groundwater level prediction 

by three AI models: ANFIS, RBFNN, and the grey self-memory model (GSM). All 

models were used to simulate the groundwater level. It was found that the ANFIS 

model showed the highest performance metrics (i.e., R2, NSE, and RMSE) with 

good accuracy. 

Bak and Bae (2019) used the ANFIS model to predict groundwater level 

using precipitation (P) and mean temperature (Tmean) and reported acceptable 

results, with RMSE and MAPE of 0.1381 and 37.869%, respectively. 

Moravej et al. (2020) applied Adaptive Neuro Fuzzy Inference System 

(ANFIS) and Gaussian Process (GP) models to predict monthly groundwater level 

from evaporation (EP) and precipitation (P). They also used genetic algorithms 

(GA), interior search algorithms (ISA), and metaheuristic optimization techniques 

to enhance the performance of the least-squares support vector machine (LSSVM). 

According to a comparative performance analysis of the ANFIS, GP, GA-LSSVM, 

and ISA-LSSVM models the maximum accuracy was attained utilising the ISA-

LSSVM algorithm. The investigation also revealed that the addition of P and EP 

had no impact on the model's performance. 
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2.3.3 Kernel model’s applications 

 

The Radial Basis Function-Neural Network (RBF-NN) and Radial Basis 

Function-Support Vector Machine (RBF-SVM) models were used by Nie et al. 

(2017) to forecast the monthly groundwater level fluctuation in Jilin, China. The 

SVM model structure was set up by using the RBF kernel function. The 

uncertainties resulting from measured input and output variable errors were 

estimated based on 95% confidence intervals. The study revealed that the RBF-

SVM model outperformed the RBF-NN model in terms of accuracy and reliability 

for predicting the monthly groundwater level fluctuation. 

Sattari et al. (2017) applied the SVR and M5 Model Tree (M5Tree) models 

in order to forecast the variance of monthly groundwater level in the Ardebil plain, 

Iran. The SVR model networks were created with a polynomial kernel function. 

The prior groundwater level, precipitation volume, and well discharge were the 

variables of the input combination, with groundwater level being the output 

variable. The variance of the monthly groundwater level could be accurately 

predicted by both models. However, the research demonstrated that using the 

M5Tree model for prediction was simpler and easier than using the SVR model. 

Guzman et al. (2019) developed the non-linear autoregressive with 

exogenous inputs-based ANN (NARX-ANN) and RBF-based support vector 

regression (RBF-SVR) models, in order to evaluate groundwater level in irrigation 

wells in Mississippi, USA. To find the best SVR model with the smallest training 

error, three kernel functions—polynomial, radial basis function, and sigmoid—

were applied. The RBF kernel function provided the most accurate results out of 

the three. The entire historical time series was divided into seasons of withdrawal 

(summer) and recharging (winter). For each season (summer or winter), the RBF-

SVR model outperformed the NARX-ANN model in terms of prediction. 
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2.3.4 Hybrid Machine Learning model’s applications 

 

Adamowski and Chan (2011) coupled a hybrid WA-ANN (Wavelet ANN) 

for groundwater level prediction by employing several hydro-climatology factors. 

Monthly groundwater level data were collected from the Chateauguay watershed in 

Quebec, Canada for a period from 2002 to 2009. Based on assessment and 

comparison, the groundwater level simulation results showed that the hybrid WA-

ANN model outperformed ANN and Autoregressive Integrated Moving Average 

(ARIMA) models. 

Nourani and Mousavi (2016) integrated a wavelet hybrid neural network 

(WT-FFNN) for groundwater level simulation utilising Self-Organising Maps 

(SOM) clustering approaches at various piezometer places in the Ardabil plain. The 

output showed that the hybrid WT-FFNN improved the average performance by up 

to 15.3% above the classic Feed Forward Neural Network (FFNN) and 

Autoregressive Integrated Moving Average (ARIMA) models. 

Chang et al. (2016) created a novel hybrid soft-computing approach using 

Self organising Maps- non-linear autoregressive with exogenous inputs (SOM-

NARX) approaches. Monthly regional groundwater level data were collected from 

203 sites in Taiwan's Zhuoshui River basin between 2000 and 2013. The outcomes, 

based on statistical indicators, showed that the hybrid SOM-NARX technique was 

suitable and reliable for modelling groundwater level. The results also showed that 

the suggested strategies could offer a healthy approach to manage water resources. 

 In order to predict the groundwater level using ANN and hybrid POS-ANN, 

Balavalikar et al. (2018) analysed monthly groundwater level fluctuation data from 

2000 to 2013 in Brahmavar, Kundapur, and Hebri in the Udupi district, India. The 

models were calibrated for this purpose using a variety of input configurations. The 

performance results showed that PSO-ANN could model groundwater level better 

than ANN. 

Kombo et al. (2020) proposed a long-term multistep groundwater level 

estimation in eastern Rwanda employing climate variable (Temperature, 
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Precipitation, solar radiation, and groundwater level) using a hybrid K-Nearest 

Neighbours Random Forest (KNN-RF) technique. The modelling outcomes using 

NSE, RMSE, MAE, and R2 demonstrated that the hybrid model provided a solid 

strategy. 

 Roshni et al. (2020) developed a standard FFNN with a hybrid WANN 

(Wavelet ANN) model for the purpose of predicting complex groundwater level in 

an alluvial aquifer in Konan groundwater basin of Japan. Gamma and M-tests (GT) 

technique was combined with the results and a different evaluation matrix was 

employed to gauge the model's effectiveness. The calibrated results demonstrated 

the reliability of GT combined WANN for the estimation of groundwater level. 

2.4 GROUNDWATER DROUGHT ASSESSMENT USING VARIOUS INDICES 

 According to Lanen and Peters (2000), natural groundwater shortages result 

from reduced recharge over a prolonged period of time, and these shortages are 

frequently made worse by human activity (e.g. abstractions). Droughts are brought 

on by low groundwater heads and small groundwater gradients. Low well yields, 

which have an impact on the public water supply and irrigation methods are the 

main cause of groundwater droughts (e.g. agricultural droughts).  

Shahid and Hazarika (2010) have researched groundwater scarcity and 

drought in three north western areas of Bangladesh. The Cumulative Deficit 

technique from a threshold groundwater level was used for the calculation of the 

severity of groundwater droughts. Monthly groundwater fluctuation data gathered 

from 85 sites were used. According to the report, groundwater scarcity affects 42% 

of the region's land every year. According to analysis of groundwater hydrographs 

and rainfall time-series, groundwater level decline in the area was caused by 

increasing groundwater withdrawal for irrigation during the dry season and frequent 

droughts. 

To identify groundwater shortages and standardise groundwater level time 

series, Bloomfield and Marchant (2013) described the Standardized Groundwater 

Level Index (SGI). The SGI is a modification of the Standardised Precipitation 
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Index (SPI) that takes into account the differences in the form and characteristics 

of precipitation and groundwater level time series. The study employed 

hydrographs of groundwater levels from 14 different locations throughout the UK. 

It was determined that if the SPI approach was appropriately modified to take into 

account the form and nature of groundwater level time series, it could be used to 

groundwater level data to produce a Standardised Groundwater Level Index (SGI). 

The study also noted that SGI offers a reliable quantification of groundwater 

drought if strong correlations between SPI and SGI are established and SGI time 

series are in good agreement with previously independently proven droughts. 

Li and Rodell (2015) estmated a Groundwater Drought Index (GWI) 

derived from monthly groundwater storage output from the Catchment Land 

Surface Model (CLSM) using a GWI derived similarly from in situ groundwater 

observations. From eight different parts of the central and north-eastern United 

States, unconfined or semi-confined aquifers were used to collect groundwater 

observations. With correlation values ranging from 0.43 to 0.92, the regional 

average GWI generated from CLSM showed a significant correlation with that 

derived from observation wells. GWI from both in situ data and CLSM was 

generally better correlated with the Standard Precipitation Index (SPI) at 12 and 24 

month timescales than at shorter timescales, however it varied depending on climate 

conditions. The correlation between GWI and SPI determined from the CLSM 

generally declines with increasing depth to the water table, which is dependent on 

both bedrock depth (a CLSM parameter) and mean annual precipitation. 

Thomas et al. (2017) used the GRACE Groundwater Drought Index (GGDI) 

over the Central Valley of California, a regional aquifer that has experienced major 

drought times throughout the GRACE record and is exposed to extensive human 

activity. The capacity to identify drought delays specific to groundwater drought is 

highlighted by relationships between GGDI and other hydrological drought indices. 

The findings showed that, in contrast to the groundwater storage deviation 

technique, GRACE-derived groundwater storage anomalies may allow for an 

assessment of groundwater variations but do not adequately capture groundwater 
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drought as measured by an in situ-based groundwater drought index (GWI). The 

increased connection between GGDI and GWI suggested that additional processing 

of GRACE-derived groundwater storage anomalies is required to identify 

groundwater drought. 

 To estimate monthly groundwater drought status from 1960 to 2013, 

Marchant and Bloomfield (2018) developed an empirical (geo)statistical modelling 

technique and evaluated it using groundwater level measurements from 948 

observation boreholes spread over the Chalk aquifer (UK). To create spatially 

distributed monthly maps of the Chalk's SGI drought status for 54 years, the 

modelled groundwater levels were standardised using the Standardized 

Groundwater Index (SGI), and the monthly SGI values were interpolated across the 

aquifer. With no prerequisite understanding of catchment or aquifer parameters, the 

empirical modelling approach allows for the estimation of confidence bounds on 

the predicted groundwater levels and SGI values. The results of the modelling 

scheme were illustrated for three major episodes of multi-annual drought (1975–

1976; 1988–1992; 2011–2012). The findings supported the earlier published 

analysis of the groundwater shortages while also offering a systematic, 

characterization of the events for the first time. 

Lee et al. (2018) analysed the groundwater drought in the Mangyeong River 

Basin by analysing precipitation, surface water (river stage and streamflow at four 

gauging stations), and groundwater (groundwater level at five monitoring stations) 

data for 11 years (2005 to 2015). Correlations were analysed between surface water, 

rainfall and groundwater. The threshold and 95% probability occurrence line 

methods were employed to evaluate groundwater drought using the SPI index, an 

extensively used meteorological drought index. Results from the SPI index showed 

that there were severe droughts in 2008–2009 and 2015. The groundwater drought 

assessment also indicated that weak droughts happened annually and a severe 

drought was in 2009; however only two monitoring wells (G-4 and G-5) in the 

upstream region registered a groundwater drought in 2015. This might be because 

majority of the annual rainfall was concentrated in the rainy season. The usage of 
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agricultural water for farming in June was responsible for the groundwater level 

drop below the threshold level. 

Seo and lee (2019) evaluated groundwater drought based on comparatively 

high spatial resolution groundwater storage change data. Global Land Data 

Assimilation System (GLDAS) models and satellite data from the Gravity 

Recovery and Climate Experiment (GRACE) and Tropical Rainfall Measuring 

Mission (TRMM) were used to develop an ANN model. The Standardized 

Groundwater Level Index (SGI) was developed by normalising groundwater 

storage variations in South Korea between 2003 and 2015 and that were predicted 

by ANN. The Standardized Precipitation-Evapotranspiration Index (SPEI) and the 

Palmer Drought Severity Index (PDSI) were utilised to validate the SGI. According 

to the findings, the SGI followed a pattern that was comparable to the PDSI, SPEI-

1 and SPEI-2.  

Rose et al. (2020) conducted analysis of the occurrence and persistence of 

the drought in Kerala's Bharathapuzha river basin. The results revealed that the river 

basin had seen several drought conditions in both the past and the future. Water 

availability was measured using the SPEI tool, which took temperature and 

precipitation into account to look for anomalies in the climatic water balance. 

The evolution of groundwater drought has been studied by Wang et al. 

(2022) using a high-resolution GRACE mass concentration (mascon) model 

perspective. The spatiotemporal changes and gridded trend characteristics of 

groundwater drought were thoroughly identified throughout China between 2003 

and 2018. The GRACE's verification results for evaluating groundwater droughts 

were credible and reliable. The most severe groundwater drought, with an average 

groundwater drought index (GDI) value of -0.86, occurred in April 2011, and the 

gridded drought trend characteristic revealed that the severity of the drought 

increased from 2003 to 2018.  

Noori and Singh (2021) determined groundwater drought index (SGI) 

values for the 66 observational points of the research area to determine the severity 
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and spatial distribution of groundwater drought conditions in Kabul city in 

Afghanistan. According to the SGI report, the majority of wells have been suffering 

from a severe and continuous drought since 2014. The continuous management of 

groundwater resources is concerned by the observation of persistent and frequent 

drought conditions in representative wells from each group. The calculated SGI 

values in wells 1 and 60, which make up a significant portion of the wells in the 

city, indicated the severity and extent of groundwater depletion in the area and show 

that management actions are urgently required to solve the issue. 

 Han et al. (2021) employed the Standardized Precipitation Index (SPI) to 

describe meteorological drought and the Drought Severity Index of Groundwater 

Storage Anomalies (GWSA-DSI) to describe groundwater droughts in the Xijiang 

River Basin (XRB) of China. A probabilistic methodology was presented to find 

the high-resolution propagation thresholds from meteorological to groundwater 

drought on 0.25 grid. The propagation time from meteorological to groundwater 

drought ranged from 8 to 42 months, according to the results, and GWSA-DSI could 

consistently identify groundwater drought episodes. Despite being in a humid area 

with plenty of precipitation, the probability of a groundwater drought occurred at 

the XRB was 43.8%, 54.8%, 61.2%, and 64.2%, during light, moderate, severe, and 

extreme meteorological drought events respectively. 

 Thompson et al. (2021) carried out a study on the principles for the 

groundwater drought index in the Chaliyar river basin in Kerala. The applicability 

of the standard groundwater drought index (GWDI) on the occurrence of 

groundwater shortage conditions was examined. In the Chaliyar river basin, the 

development of the drought and its related impact on the groundwater regime were 

studied. A modified GWDI was proposed based on the typical responses to drought 

situations in various physiographic zones. 

 Guo et al. (2021) measured groundwater drought using the standardised 

precipitation index (SPI) using the long-term groundwater level data (1981–2010) 

gathered from the Climate Response Network wells across the conterminous United 

States to. As the primary research objects, four monitoring wells in Georgia, 
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Massachusetts, Oklahoma, and Washington were chosen.  The pattern of the lag 

time between the SGI and SPI in various time scales was then examined in order to 

calculate the SGI and assess the groundwater drought status when combined with 

the SPI. Due to the complexity of geographic position, agricultural irrigation, 

population, and other aspects of the natural environment and human activities, 

groundwater drought differed greatly in different places. The results showed that 

beginning and ending times for drought conditions as well as the intensity of both 

flooding and drought at various time frames in the same location were found to 

vary. The cross-correlation coefficients increased as the time scales lengthened. 

Wells in Georgia, Massachusetts, Oklahoma, and Washington had average 

correlation values between SPI and SGI of -0.568, -0.634, -0.667, and -0.496, 

respectively. 

 Zhu and Zhang (2022) identified the spatiotemporal characteristics and 

evolution trend of the groundwater drought in the Yangtze River catchments 

(YZRC) and Yellow River catchments (YRC) between 2002 and 2020 by using a 

GRACE-based groundwater drought index. The study assessed the influence of the 

influencing factors, and quantitatively identified the main influencing factors. 

According to the findings, the majority of groundwater droughts in the YZRC 

occurred between 2002 and 2009 in the middle and lower reaches of the catchments, 

and most catchments showed a decreasing trend. But most of the catchments in 

YRC had experienced an increasing trend between 2015 and 2019, and had impact 

on all the nearby catchments. 

 Zhao et al. (2022) explored propagation dynamics from meteorological 

droughts to groundwater droughts and their spatial-temporal evolution in order to 

monitor and evaluate the danger of groundwater droughts. In this work, 

groundwater droughts in the North China Plain (NCP) were evaluated using the 

Standardized Precipitation and Evapotranspiration Index (SPEI) and the Gravity 

Recovery and Climate Experiment (GRACE) Groundwater Drought Index (GDI). 

The Directed Information Transfer Index (DITI) was used to track the spread of 

groundwater droughts from meteorological droughts. The results showed that 
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GRACE data for estimating drought occurrences in the NCP had good 

dependability. When there was a temporal change, the SPEI1 first dropped and then 

rose; its lowest point occurred in 2011. The peak year for the GDI was 2008, after 

which it was first elevated, then declined. But prior to 2011, the SPEI-1's spatial 

distribution in the NCP's core region dramatically declined. SPEI-1 showed a rising 

trend for the 2011–2020 period in numerous NCP regions. The centre and western 

regions of the NCP showed an increasing trend in GDI before 2008, while several 

areas revealed a falling trend in GDI over the 2008–2020 period.  

Ali et al. (2022) examined the trend characteristics, temporal evolution, and 

spatial distribution of GRACE Groundwater Drought Index (GGDI) from 2003 to 

2016 in the Indus Basin Irrigation System (IBIS). Four machine learning models 

(XG-Boost, RF, SVM, ANN) were used to train the datasets of the Gravity 

Recovery and Climate Experiment (GRACE), Terrestrial Water Storage (TWS), 

and Groundwater Storage (GWS) data to increase the resolution from 1◦ to 0.25◦. 

Extreme Gradient Boosting (XG-Boost) model outperformed the other models with 

performance indications of Pearson correlation (R) as 0.99, Nash Sutcliff Efficiency 

(NSE) as 0.99, Root Mean Square Error (RMSE) as 5.22 mm, and Mean Absolute 

Error (MAE) as 2.75 mm.  The GRACE Groundwater Drought Index (GGDI) was 

calculated by normalizing XGBoost-downscaled GWS.  
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 CHAPTER-III 

MATERIALS AND METHODS 

 
This chapter gives a brief description of the study area, its geographic 

location, climatic condition, geomorphology and hydrogeology. It also explains the 

various methodologies employed for variability and trend analysis of groundwater 

level, modelling of groundwater level by Artificial Neural Network and estimation 

of Standardized Groundwater level Index (SGI) for drought analysis.  

3.1 GENERAL DESCRIPTION OF THE STUDY AREA 

3.1.1 Study area location 

The Kalpathypuzha watershed one of the principal tributaries and the most 

water stressed regions of the Bharathapuzha River basin was selected for the study. 

The Kalpathypuzha originates at the higher slopes of the Western Ghats deep inside 

Palakkad district from the place called Chenthamarakulam in the hills, north of 

Walayar. Four tributaries, including the Malampuzha River, Walayar River, 

Korayar River, and Varattar River, come together to make it. Kalpathypuzha is 

crossed by the Malampuzha Dam. The area of the Kalpathypuzha watershed is 

shared between Tamil Nadu and Kerala and only the part coming in the Kerala 

region is taken in this study. The study area covers parts of Kuzhalmannam, 

Palakkad, Malampuzha and Chittur blocks of Palakkad district. It is located in 

between 10.939443 °N and 10.684076 °N latitude and 76.428872 °E and 76.900910 

°E longitude. The geographic area of the study portion is 759 km2. The elevation of 

the study area ranges from 24 to 2028 m (Drisya et al, 2020). The location map of 

the study area is shown in the Fig 3.1. 
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Fig 3.1 Location map of the study area 

3.1.2 Climate 

The study area falls under tropical dry and wet climate. The average annual 

rainfall is about 2400 mm. The average maximum and minimum temperatures are 

32.45 °C and 23.50 °C respectively. The average annual relative humidity is about 

72% and the average annual wind speed is about 5.75km/hr.  

3.1.3 Geomorphology and soil 

Physiographically the study area contains high land and the mid land and 

the main soil type of the area is laterite and alluvial soil. 

3.1.4 Groundwater scenario 

Archaean metamorphic complex rocks provide the foundation of the 

Palakkad district. These consist of the granulite group and the gneisses, which are 

found beneath laterite and alluvium. All geological formations, from Archaean 
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crystallines (hard rock) to Recent alluvium (soft rock), contain groundwater. 

Phreatic groundwater is found in laterite, alluvium, and worn crystalline materials. 

3.1.5 Hydrogeology 

The hard rock province covers major portion of the study area. The 

hornblende biotite gneiss is the main hard rock aquifer. 

3.1.6 Groundwater exploitation status of Palakkad 

The Fig 3.2 shown is collected from the Ground Water Information Booklet 

of Palakkad District, CGWB- 2013 which reveals the groundwater exploitation 

status of Palakkad district. The map clearly indicated that the Chittur block is 

overexploited and the Malampuzha block is critical zone and both these areas 

comes under the study area. 

 

Fig 3.2 Map showing groundwater exploitation status of the study area 

(source: Ground Water Information Booklet of Palakkad District, CGWB- 2013) 
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The Fig 3.3 shows the location map of various wells selected in the study 

area. Twelve observation wells evenly distributed in four blocks Kuzhalmannam, 

Palakkad, Malampuzha and Chittur of Palakkad district were selected for study. 

Three wells 160 PKD-12, PKD S-3 and PKD S-4 in Kuzhalmannam block, three 

wells 128, 129 and 160 PKD-8 in Palakkad block, four wells 133, 140, 142 and 

PKD S-15 in Malampuzha block and two wells 139 and PKD S-7 in Chittur block. 

The wells are denoted as per ID number given by Groundwater Dept. Palakkad. The 

google earth imagery of various well locations is also shown in Fig 3.4. 

 

Fig 3.3 Location Map of wells selected in the study area 
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Fig 3.4 Google earth imagery of study area with well location 

 

Fig 3.5 Classified Digital Elevation Model of the study area 

The classified digital elevation model of the study area prepared for the 

study is shown in the Fig 3.5. The elevation of the entire study area ranges from 24 

to 2028 m. The average elevation is 1026. No observation wells are located in the 

highly elevated areas as it is forest. The elevation difference between wells ranges 

from 67 to 152 m. Some of the drought scenes (Drought - Situation Assessment 
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Report, 2017, Kerala State Drought Monitoring Cell) of the study area are shown 

in the Plate 3.1, Plate 3.2, Plate 3.3 and Plate 3.4. 

 

Plate 3.1 Drought scene- Malampuzha reservoir area, Palakkad 

 

Plate 3.2 Drought scene- Kalpathypuzha during summer months 
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Plate 3.3 Drought scene- Dried up Chitturpuzha 

 

Plate 3.4 Drinking water scenario in Vadakarapathi GP, Palakkad during 

2017 

3.1.7 Software and Tools used 

Software and tools employed in the study are briefly described as follows 

3.1.7.1 ArcGIS – ArcGIS 10.4 

ArcGIS is geospatial software used to view, alter, store, and analyze 

geographic data. ArcGIS software released by the Environmental Systems Research 
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Institute (ESRI) is used. ArcGIS is a collection of programmes that includes 

ArcMap, ArcCatalog, ArcGIS Pro, ArcScene, and ArcGlobe. ArcGIS 10.4 version 

is used in this study. ArcGIS is mainly used in this study for generating contours, 

location map and spatial distribution maps. The spatial distribution maps were 

generated using IDW interpolation technique in ArcGIS. 

3.1.7.2 Google earth  

A free geospatial desktop programme called Google Earth Pro gives users 

the ability to view the entire planet and make incredibly precise maps. The 3D 

mapping system in Earth Pro, designed for customers with complex feature 

requirements, enables the import and export of GIS data as well as the analysis and 

collection of geographic data. It is employed in this study to define the study region 

and pinpoint the latitude and longitude of the well locations. 

3.1.7.3 MATLAB-R2016a 

MATLAB is a programming and numeric computing platform which allows 

matrix manipulations, plotting of functions and data, implementation of algorithms, 

creation of user interfaces. In this study it is used for ANN modelling of 

groundwater level. 

3.1.7.4 XLSTAT 

XLSTAT is a complete analysis and statistics add-in for Excel, used to 

analyze, customize, and share results within Microsoft Excel. In this study it is used 

for variability and trend analysis of groundwater level. 

3.1.8 Data Availability 

Precipitation data, temperature data, well location data and its groundwater 

level data were the dataset used in this study. The data were collected for a period 

of 15 years from 2007 to 2021. The details of data used, its source and utility are 

shown in Table 3.1.  

 



38 
 

   Table 3.1 Details of Data used, its source and utility 

Data Source Utility 

Precipitation http://dsp.imdpune.gov

.in/  

(IMD Pune) 

Input for 

groundwater level 

modelling 

Temperature 

(Max temperature 

and Min 

temperature) 

http://dsp.imdpune.gov

.in/ 

(IMD Pune) 

 

Input for 

groundwater level 

modelling 

Well Data 

(The well location 

data and groundwater 

level data of 12 

observation wells 

located evenly in the 

study area.) 

 

District Groundwater 

Department, Palakkad. 

 

GWL trend 

analysis 

GWL modelling 

Groundwater 

drought 

assessment 

 

3.1.8.1 Precipitation data 

The daily precipitation data in mm for a period of 15 years from 2007 to 

2021 was collected from IMD station Palakkad, India Meteorological Department 

(IMD) portal, it is given in Appendix-III. IMD is the principal agency responsible 

for meteorological observations and weather forecasting in the country. The daily 

rainfall data is converted into monthly rainfall and monthly rainfall data is used in 

the study. 

http://dsp.imdpune.gov.in/
http://dsp.imdpune.gov.in/
http://dsp.imdpune.gov.in/
http://dsp.imdpune.gov.in/
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3.1.8.2 Temperature data 

The Maximum temperature and minimum temperature data required in this 

study were collected as IMD gridded data from the IMD portal, it is given in 

Appendix-IV and V. The gridded data is then extracted using gridded data extractor 

to daily minimum temperature and daily maximum temperature data for the 

location. The daily temperature data is then converted into monthly data for the 

study. The temperature data was collected for the study period of 15 years (2007-

2021). 

3.1.8.3 Well data 

A total of 12 observation wells evenly distributed in the study area were 

selected for the study. These wells are distributed in four blocks of Palakkad district 

namely, Malampuzha, Palakkad, Kuzhalmannam and Chittur. The well location 

data and monthly groundwater level data of all the wells was collected from the 

District Groundwater Department, Palakkad for a period of 15 years (2007-2021). 

The monthly groundwater level data is given in Appendix-I. Out of twelve wells 

selected seven wells were dug wells and six wells were borewells. Details of wells 

selected for the study are shown in the Table 3.2.  

Table 3.2 Details of wells selected for the study 

Sl. 

No 

   Well (ID 

as per 

state 

GW 

Dept. 

norms) 

Block Latitude 

(Decimal 

degrees) 

Longitude 

(Decimal 

degrees) 

Well 

type 

Elevation 

(m) 

1 160 

PKD-12 

Kuzhalmannam 10.715 76.597 Bore 

well 

70 

2 PKD S-3 Kuzhalmannam 10.721 76.601 Dug 

well 

74 

3 PKD S-4 Kuzhalmannam 10.729 76.550 Dug 

well 

67 
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4 128 Palakkad 10.787 76.497 Dug 

well 

68 

5 129 Palakkad 10.795 76.563 Dug 

well 

71 

6 160 

PKD-8 

Palakkad 10.765 76.655 Bore 

well 

92 

7 133 Malampuzha 10.797 76.745 Dug 

well 

113 

8 140 Malampuzha 10.835 76.596 Bore 

well 

90 

9 142 Malampuzha 10.797 76.764 Bore 

well 

113 

10 PKD S-

15 

Malampuzha 10.815 76.651 Dug 

well 

93 

11 139 Chittur 10.741 76.817 Bore 

well 

152 

12 PKD S-7 Chittur 10.737 76.837 Dug 

well 

152 

 

3.1.9 Over-all Conceptual Framework of the study 

 

 

Analysis of GWL variability 

(Mean, Median, SD, CV, Skewness, Kurtosis) 

 

Trend analysis of GWL  

(using Mann-Kendal test and Sen’s Slope estimator) 

 

Assessment of GWL behavior 

(by GWL contour and GWL fluctuation) 
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3.2 ANALYSIS OF GROUNDWATER LEVEL VARIABILITY 

In order to study the variability of groundwater level, the statistical 

parameters mean, standard deviation, coefficient of variation, skewness and 

kurtosis were computed for the groundwater level data.   

3.2.1 Mean  

 The mean is one of the measurements of central tendency in statistics. It is 

a mathematical representation of the average value of a set of numbers, calculated 

as the sum of the numbers divided by the total number of numbers in the set. The 

arithmetic mean is calculated by using the formula (Helsel and Hirsch, 1992). 

𝜇 =
∑ 𝑋

𝑁
 

Where, µ - sample mean 

X - variable of a sample 

N - number of variables in a sample 

Development of ANN model for GWL prediction 

 

Estimation of SGI values using observed GWL data 

 

 Estimation of SGI values using ANN predicted GWL data 

 

 Comparison of the SGI values obtained by observed GWL and 

predicted GWL 

 

fluctuation) 

 

Classification of the area based on SGI values 

to identify the severity of drought in the area 

 

Prediction of GWL and forecasting of SGI values for the year 

2023 using developed model 
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3.2.2 Standard Deviation 

 The statistics, data dispersion is measured by standard deviation. It is the 

positive square root of the arithmetic mean of the squares of deviation of the given 

values from arithmetic mean. The standard deviation is calculated by using the 

formula (Helsel and Hirsch, 1992). 

𝜎 =  √
∑(𝑋 − 𝜇)2

𝑁
 

Where,  

𝞂 – Standard deviation 

X – the variable of the sample 

N – Number of variables in a sample 

µ - sample mean 

3.2.3 Coefficient of Variation (CV) 

 The statistical indicator of how widely apart individual data points are from 

the mean value is called the coefficient of variation (CV). The coefficient of 

variation is calculated by using the formula (Helsel and Hirsch, 1992) 

𝐶𝑉 =
𝜎

𝜇
× 100 

Where, CV – coefficient of variation 

𝞂 – Standard deviation 

µ - sample mean 

3.2.4 Skewness 

Skewness is a metric for the asymmetry of a real-valued random variable's 

probability distribution with respect to its mean. A positive, zero, negative, or 

undefined value for the skewness can occur. Positive skew typically implies that 

the distribution's tail is on the right, whereas negative skew typically indicates that 

it is on the left (Helsel and Hirsch, 1992). 
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3.2.5 Kurtosis 

 Kurtosis is a measure for a distribution's degree of tailiness. Tailedness is 

how often outliers occur. The tailedness of a distribution in comparison to a normal 

distribution is known as excess kurtosis. Mesokurtic distributions are those with 

medium kurtosis (medium tails), platykurtic distributions are those with low 

kurtosis (thin tails), and leptokurtic distributions are those with high kurtosis (fat 

tails). The tapering endpoints on either side of a distribution are known as the tails. 

They show the likelihood or frequency of values that are drastically high or low in 

comparison to the mean (Helsel and Hirsch, 1992). 

3.3 TREND ANALYSIS OF GROUNDWATER LEVEL 

The process of gathering data and looking for patterns or trends in it is 

known as trend analysis. It is a technique for time series data analysis that compares 

a specific item over a considerable amount of time in order to find a general pattern 

in the relationships between related components or variables and predict the future 

course of this pattern. 

Trend analysis of groundwater level data was statistically examined in two 

phases. The non-parametric Mann-Kendall test was applied first. The normalised 

test statistic (Z) value was used to determine if there was an upward or downward 

trend. Using the non-parametric Sen's slope estimator, the rate of trend rise or fall 

was calculated in the second phase. The annual groundwater level data were 

subjected to trend analysis using the following techniques to determine whether 

there was an upward or downward trend. 

3.3.1 Mann-Kendall Test (M-K) 

 A non-parametric test called the M-K test is used to identify trends and the 

non-linear trend that results from Kendall test statistics. The Mann-Kendall test was 

employed for trend analysis of time series data. Based on the normalised Z statistics 

value, the monotonic trend (increasing or decreasing) in the annual groundwater 

level time series was examined. The groundwater level's decreasing trend is 
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represented by the Z statistic's negative value, and its rising trend is shown by its 

positive value. It has been discovered to be a good tool for trend recognition. 

 Mann-Kendall test evaluates the relative magnitudes of data rather than the 

values itself. Each data value in the time series is compared to all succeeding values 

in this test. When a data value is increased by one, the Mann-Kendall statistics is 

initially believed to be zero, and vice versa. The final value of S is the sum of all 

such increments and decrements. In contrast to the alternative hypothesis (H1), 

which predicts an increasing or declining monotonic trend, the null hypothesis (H0) 

for the Mann-Kendall test is that there is no trend or serial correlation among the 

population under study Halder et al., (2020). 

The Mann-Kendall statistics (S) is given by the equation 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1
 

Where, 

sign (xj – xi) = 1, if (xj – xi) > 0 

sign (xj – xi) = 0, if (xj – xi) = 0 

sign (xj – xi) = -1, if (xj – xi) < 0 

  S values that are positive or negative represent an upward or downward 

trend, respectively. To determine the significance of the trend, statistical analysis is 

required. Kendall describes the normal approximation test technique (1975). This 

test assumes that the dataset only contains a small number of tied values. The 

variance (S) is calculated by the following equation  

𝑉𝑎𝑟 (𝑆) =  
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝(𝑡𝑝

𝑔

𝑝=1
− 1)(2𝑡𝑝 + 5)] 

                                                                                                  Halder et al., (2020) 

Where, 

n – number of data points 

g – number of tied groups  

tp - number of data points in the pth group 

Halder et al., (2020) 
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The normal Z- statistics is computed as follows: 

Z = 
𝑆−1

√𝑉𝑎𝑟 (𝑆)
 , if S > 0 

Z = 0, if S = 0 

Z = 
𝑆+1

√𝑉𝑎𝑟 (𝑆)
 , if S < 0 

 If Z is negative and the computed Z-statistics is higher than the Z-value 

corresponding to the 5% level of significance, the trend is considered to be falling. 

If Z is positive and the computed Z-statistics is higher than the Z value 

corresponding to the 5% level of significance, the trend is considered to be rising. 

There is no trend if the calculated Z-statistics is smaller than the Z-value equivalent 

to the 5% level of significance. 

Z value is 1.645 at 10% level of significance 

Z value is 1.96 at 5% level of significance  

Z value is 2.33 at 1% level of significance  

3.3.2 Sen’s slope Estimator 

 One of the most popular models to find linear trends is simple linear 

regression. However, this approach necessitates the residuals' normality being 

assumed. Sen's slope is superior to the regression slope in that it is less impacted by 

significant data errors and outliers. The median of the pair-wise slopes between 

each pair of points in the dataset is used to determine the Sen's slope. Each 

individual slope (mij)is estimated using the equation: 

𝑚𝑖𝑗 =
(𝑌𝑗 − 𝑌𝑖)

(𝑗 − 𝑖)
 

                                                                                    Halder et al., (2020) 

Where,  

i = 1 to n-1 and j = 2 to n, 

Yj and Yi are data values at time j and i (j > i), respectively. 

 If there are n values of Yj in the time series, there will be N = n(n-1)/2 slope 

estimates. The median slope of these N values of slopes is known as the Sen's slope. 
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The Sen’s slope is: 

                                        𝑚 =  𝑚
(

𝑁+1

2
)
, if n is odd 

                                      𝑚 =
1

2
(𝑚(𝑁

2

) + 𝑚(𝑁+1

2

)), if n is even 

                                                                                                 Halder et al., (2020) 

Sen's slope suggests a rising trend when it is positive, while Sen's slope reveals the 

declining tendency when it is negative. 

3.4 STUDY OF GROUNDWATER LEVEL BEHAVIOUR  

The groundwater level behavior of the study area was studied based on the 

groundwater level data available from 12 observation wells evenly distributed in 

the study area. The water table contour and groundwater level fluctuations were 

analyzed. 

3.4.1 Water table Contour maps 

 The elevations of the water table at the piezometric stations are plotted on a 

base map of the field by the standard mapping procedures used for the ground 

surface contour plotting. Lines of equal water table elevations was drawn. The locus 

of points on the water table where the hydraulic head is constant is known as a water 

table contour line. Water table contour maps of pre-monsoon, post-monsoon and 

annual were prepared with the help ArcGIS software. 

3.4.2 Groundwater level fluctuations 

 Groundwater level is known to fluctuate depending on recharge and 

discharge of groundwater. Recharge due to rainfall, return flow of irrigation, canal 

seepage and seepage from tanks and ponds are the major components of 

groundwater recharge whereas draft from minor irrigation structure for irrigation 

use, industrial use, domestic use and livestock use are the main components of 

groundwater discharge in the area. Groundwater level fluctuation is calculated as 

the difference between post-monsoon (Sept-Nov) and pre-monsoon (Mar-May) 

groundwater levels.  
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3.5 MODELLING GROUNDWATER LEVEL 

Artificial Neural Network (ANN) was used for modelling the groundwater 

level. The details of ANN modelling are explained in the following subheads 

3.5.1 Artificial Neural Network 

The human brain or nervous system, which consists of a massively large 

parallel interconnection of a large number of neurons, is where neural networks get 

their beginning because it completes tasks like perceptron tasks, recognition tasks, 

etc. in a fraction of the time required by high-performance computers of today.  

The artificial neural network is inspired by the biological neural network 

that is the brain. The human brain has a highly complex and non-linear parallel 

computer. And this can organize its structural constituent elements, which are 

‘neurons’. They are interconnected in a highly complex way. Typically, there are 

10 billion neurons and approximately 60 trillion interconnections. Rather than 

considering the structure of the human brain in totality, it is possible to mimic only 

an extremely small part of it in order to perform some very small task. 

3.5.2 Usefulness and Capabilities of ANN models (Haykin, 2001) 

a) Nonlinearity: If the relationship between inputs and output cannot be 

described in terms of a simple linear equation. Real-life problems are highly 

non-linear in nature. ANN is interconnections of non-linear neurons, and 

nonlinearity is distributed throughout. 

b) Input-output mapping: Specifying what is going to be the output or desired 

response for a given input. The computational unit has a set of free 

parameters. If the obtained output is not close to the desired output, free 

parameters can be adjusted such that the difference between the actual and 

the desired is minimized, that have to be done several times. This learning 

ability makes neural networks remarkably different from the conventional 

computational unit.  

c) Adaptivity: Neural network can modify its free parameters to the changes 

in the surrounding environment. 
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d) Evidential response: Neural network not only reports what the response is, 

but it can also tell the response is with what confidence level. It gives a 

decision with a measure of confidence. 

e) Fault tolerance: If some connections malfunction, it leads to some 

performance degradation, called graceful degradation. 

f) VLSI implement ability: very large-scale integrated circuit. A very large 

number of neurons can be integrated together. 

g) Neurobiological analogy: motivated by the biological neural network 

system. 

Because of the above-mentioned advantages and due to the non-linear nature of 

groundwater level changes, ANN was selected for modelling groundwater level in 

this study. 

3.5.3 Components of ANN (Haykin, 2001) 

a) Input Nodes (input layer): The information is typically passed to the next 

layer (hidden layer) without any computation taking place in this layer. A 

layer is another name for a group of nodes. 

b) Hidden nodes (hidden layer): Hidden layers are the locations of 

intermediary processing or computation; they carry out calculations and 

then pass weights (signals or information) from the input layer to the next 

layer (another hidden layer or to the output layer).It is possible to have a 

neural network without a hidden layer. 

c) Output Nodes (output layer): Use an activation function here that maps to 

the specified output format (e.g. softmax for classification). 

d) Connections and weights: The network consist of connections; each 

connection transfer the output of a neuron ‘i’ to the input of a neuron ‘j’. In 

this meaning ‘i’ is the predecessor of ‘j’ and ‘j’ is the successor of ‘i’, each 

connection is assigned a weight Wij. 

e) Activation function: A node's output in response to an input or combination 

of inputs is determined by the activation function of that node. It is a non-

linear activation function commonly used. In artificial neural networks this 

function is also called the transfer function. 
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f) Learning rule: The learning rule is a rule or algorithm that adjusts the neural 

network's parameters so that a particular input will result in a preferred 

output. The weights and thresholds are typically changed as a result of this 

learning process. 

3.5.4 Mathematical representation of neuron 

The mathematical representation of neuron described by (Haykin, 

2001) is as follows 

𝑢𝑘 =  ∑(𝑤𝑘𝑗

𝑚

𝑗=1

 𝑥𝑖) 

𝑦𝑘 =  𝜑(𝑢𝑘 + 𝑏𝑘) 

Where, Bias denoted by 𝑏𝑘, has the effect of raising or reducing the net input of the 

activation function. x1, x2, ..., xm are the inputs; wk1, wk2, ..., wkm are the weights of 

the neuron k; uk is the linear combiner output due to input signals; φ(.) is the 

activation function; yk is the output signal of the neuron. 

3.5.5 Various Activation Functions in ANN (Haykin, 2001) 

Additionally, known as a transfer function. It is a mathematical description 

of the relationship between the input and output, expressed in terms of spatial or 

temporal frequency. There are several activation functions for neural network. 

Three of them which are available in the GUI of Neural Network toolbox of 

MATLAB software are explained as follows: 

3.5.5.1 Log-Sigmoid activation function (Log-sig) 

𝑎 = 𝐿𝑜𝑔𝑠𝑖𝑔 (𝑛) =
1

1 + 𝑒−𝑛
 

Log-sigmoid transfer function is one of the most commonly used transfer 

functions. This transfer function compresses the output into the range of 0 to 1 from 

the input, which may be any value between plus and minus infinity. A graphical 

representation of Log-Sigmoid activation function is shown in Fig 3.6. 
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Fig 3.6 Log-sigmoid activation function (Log-sig) 

3.5.5.2  Hyperbolic tangent activation function (Tansig) 

                                                 𝑎 = 𝑇𝑎𝑛𝑠𝑖𝑔 (𝑛) =
2

1+𝑒−2𝑛- 1 

 This transfer function is related to a bipolar sigmoid which has an output in 

the range of -1 to +1. Mathematically equivalent to tanh (n). For neural networks, 

when speed is more crucial than the precise shape of the transfer function, this 

function provides a good trade-off. It was observed that this transfer function was 

well suited in terms of better prediction results. A graphical representation of 

hyperbolic tangent activation function is shown in Fig 3.7. 

 

Fig 3.7 hyperbolic tangent activation function (Tansig) 

3.5.5.3 Purelin Transfer function (Purelin) 

                                         𝑎 = 𝑝𝑢𝑟𝑙𝑖𝑛 (𝑛)  

Purelin activation function specially used when, model operated with input 

and output parameter having liner relationship with each other. A graphical 

representation of Purelin activation function is shown in Fig 3.8. 
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Fig 3.8 purelin transfer function (Purelin) 

Among these three activation functions, hyperbolic tangent activation 

function (Tansig) was used in this study as it was well suited in terms of better 

prediction results as per literatures (Seo and Lee 2019). 

3.5.6 Learning Rules in a Neural Network (Haykin, 2001) 

 

The ability of a neural network to learn from its surroundings and to enhance 

performance as a result of prior experience is its key characteristic. This could be 

achieved by the process called as learning. Mendel and McClaren defined learning 

as, “Learning is the process by which the environment in which a neural network is 

embedded modifies the free parameters of the network through a process of 

simulation. The way in which the parameter changes happen determines the type of 

learning. There are five learning rules as follows: 

1. Error-correction learning 

2. Memory-based learning 

3. Hebbian learning 

4. Competitive learning and  

5. Boltzmann learning. 

 In this study the most commonly used learning rule ‘error-correction 

learning rule’ was used based on previous research (Seo and Lee 2019). 

3.5.7 Types of Learning (Haykin, 2001) 

There are three major learning paradigms for the neural network; supervised 

learning, unsupervised learning and reinforcement learning. 
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3.5.7.1 Supervised Learning:  

The outputs and inputs are both offered. After processing the inputs, the 

network compares the obtained outputs to the desired outputs. In order to modify 

the weights and reduce the error, the prediction error is transmitted backwards 

through the network. This process is continued with multiple training sets until the 

error is minimized across many sets 

3.5.7.2 Unsupervised Learning:  

Although the network is given inputs, the desired outputs are not delivered. 

The system must then choose for itself, through self-organization or adaptation, the 

features it will employ to organize the input data. May include neural cooperation, 

competition, or both. The training task is to classify inputs into its own categories, 

extract features from the independent variables, and group together patterns that are 

comparable in some way. 

3.5.7.3 Reinforcement learning:   

This kind of learning determines the neural network's parameters in 

situations where the data is typically generated by the interactions with the 

environment rather than being provided. This knowledge relates to how a neural 

network should behave in a given situation in order to optimise a potential long-

term benefit. 

Out of these three learning paradigms, the supervised learning is used 

in the present study because the output values for the given input vectors 

were provided. 

3.5.8 Back propagation algorithm in ANN 

A multi-layer feed-forward network trained using the error back propagation 

method makes up the back-propagation algorithm. It is one of the widely used 

neural network algorithm. It learns by applying the steepest descent approach, 

which modifies the network's weight values and threshold value through back 

propagation to get the lowest possible error sum of squares. In this approach, the 
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connection weight of the network is initially given a low value, and then a training 

sample is chosen to calculate the gradient error in relation to this training sample. 

The back-propagation learning process is described as follows:  

1. Forward propagation of operating signal: From the input layer via the hidden 

layer and onto the output layer, the input signal is propagated. The network's weight 

and offset values are kept constant during the forward propagation operating signal, 

and the status of each layer of neurons only affects the subsequent layer of neurons. 

The back propagation of error signal might be used if the desired output cannot be 

achieved in the output layer.  

2. Back propagation of error signal: The difference between the network's actual 

output and expected output is known as an error signal. In this case, Layer by layer, 

the erroneous signal is transmitted from the output layer to the input layer. The error 

feedback that occurs during the back propagation of the error signal controls the 

network's weight value. Weight value and offset value are regularly modified to 

bring the network's actual output and expected output closer to one another. 

3.5.9 Neural Network Architectures in ANN (Haykin, 2001) 

 There are four major types of neural network architectures. They are feed 

forward neural network, recurrent neural network, radial basis function network and 

convolutional neural network. 

3.5.9.1 Feedforward Neural Network 

There are no cycles in the connections between the units of an artificial 

neural network called a feedforward neural network. Information moves only 

forward in this network, passing via any potential hidden nodes along the way from 

the input nodes to the output nodes. There are no cycles or loops in the network 

(Haykin, 2001). There are two types of feedforward neural networks as: 

a) Single-Layer Perceptron:  

As the simplest feed forward neural network, it just has one layer of output 

nodes because there is no hidden layer in it. This is referred to as a single layer since 
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the input layer is excluded from the layer count because there are no computations 

performed there, the inputs are fed directly into the outputs via a set of weights. 

(Haykin, 2001). A single layer feed forward neural network is shown in Fig 3.9. 

 

Fig 3.9 Single layer perceptron (Source: https://cdn.educba.com/academy/wp-

content/uploads/2020/02/Single-Layer-Perceptron-01.jpg) 

b) Multi-Layer Perceptron (MLP) 

 This class of networks consists of multiple layers of computing units that are 

frequently connected in a feed-forward fashion. Each neuron in a layer has direct 

connections with the neurons in the layer above it. A sigmoid function is widely 

used as an activation function in these networks' units. The ability of MLP to learn 

non-linear representations makes them significantly more helpful than other 

networks (Haykin, 2001). A Multi-layer feed forward neural network is shown in 

Fig 3.10. 

 

Fig 3.10 Multi-layer perceptron (MLP) 

(Source:https://www.tutorialspoint.com/tensorflow/images/multi_layer_perceptro

n.jpg) 

https://cdn.educba.com/academy/wp-content/uploads/2020/02/Single-Layer-Perceptron-01.jpg
https://cdn.educba.com/academy/wp-content/uploads/2020/02/Single-Layer-Perceptron-01.jpg
https://www.tutorialspoint.com/tensorflow/images/multi_layer_perceptron.jpg
https://www.tutorialspoint.com/tensorflow/images/multi_layer_perceptron.jpg
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 Among the different types of neural network architectures, the feed 

forward multi-layer perceptron was used in this study as it gives the best result 

as per literatures (Seo and Lee 2019).   

3.5.10 General Procedure for Development of ANN models 

It is necessary to define the data to be used and present it to the ANN as a 

pattern of input data with the desired outcome or target. The data are then divided 

into the training set and the validation set. The ANN uses only the training set in its 

learning process in developing the model. The validation set is used to test the 

model for its predictive ability and when to stop the training of the ANN. The 

number of hidden layers and the number of neurons for each hidden layer is to be 

selected. All the ANN parameters are set before starting the training process. The 

input data and weights are used to calculate the output during the training phase. 

The backpropagation algorithm is used to train the ANN by adjusting the weights 

to reduce the difference between the current output and the desired output. To 

evaluate whether the ANN has acquired the necessary skills to complete the task at 

hand, an evaluation procedure must be completed. Periodically pausing the training 

process and testing its effectiveness may be a part of this review process until a 

satisfactory outcome is achieved. The training of the ANN is finished, and it is 

prepared for usage once an acceptable result is reached. The flowchart for 

development of ANN model is shown in Fig 3.11. 

 The timing of the training process's termination is crucial for getting a 

decent model. If an ANN is over trained, a curve-fitting problem may occur 

whereby the ANN starts to fit itself to the training set instead of creating a 

generalized model. The test and validation data set often shows poor forecasts as a 

result of this. On the other side, if the ANN is not trained for a sufficient amount of 

time, it can settle for a local minimum solution rather than the global minimum. 

Usually, this results in a sub-optimal model. The number of iterations necessary to 

generate the optimal model can be determined by periodically testing the ANN on 

the test set and recording both the training and test data set results. Resetting the 

ANN and training the network to that number of iterations is all that is required. 



56 
 

 

Fig 3.11 General Procedure for Development of ANN models 

3.5.11 Limitations of ANN 

a) Amount of data: Typically, more data is needed for neural networks than 

for typical machine learning algorithms. 

b) Determination of proper network structure:  When choosing the structure of 

Artificial Neural Networks, there is no set rule. Experience and trial and 

error are required to establish an appropriate network structure. 

c) Computationally expensive: Neural networks are also more 

computationally expensive than traditional algorithms. 

d) d) Difficulty in presenting the issue to the network: ANNs can handle 

numerical data. Before using ANN, problems must be converted into 

numerical values. 

e) The duration of the network is unknown: When the network's error on the 

sample is decreased to a specific number, the training is said to be finished. 

This value does not produce the best outcomes. 
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f) Black-box’ nature of the ANN model. 

g) These models are prone to overfitting. 

When comparing its capabilities and limitations, ANN was found to give the 

approximate and near solutions as similar to that of physically based models which 

requires a lot of expensive inputs. 

3.5.12 Performance Indicators of ANN Model (Haykin, 2001)  

For better appreciation of model, the following performance indicators were 

used to evaluate the predictive efficiency of the developed ANN models. 

3.5.12.1 Correlation coefficient (r)  

 The correlation coefficient is the specific measure that assesses the strength 

of the linear relationship between two variables in a correlation analysis. For a best 

model the r value is nearly equal to 1. The relationship between two variables is 

generally considered strong when their r value is larger than 0.7. Correlation 

coefficient was calculated using the equation. 

r = 
∑ (Xi−X)̅̅ ̅(Yi−Y)̅̅ ̅N

i=1

√∑ (Xi−X̅)2N
i=1 ∑ (Yi−Y̅)2N

i=1

 

3.5.12.2 Coefficient of determination R2  

 The degree of accuracy with which a statistical model forecasts a result is 

measured by the coefficient of determination, which has a range of 0 to 1. It is the 

square of correlation coefficient. For a best model the coefficient of determination 

value is nearly equal to 1. Generally, the coefficient of determination with about 

70% is considered good. 50% is considered a moderate fit for the given model.  

3.5.12.3 Root Mean Square Error (RMSE) 

The root mean square error is used to quantify the prediction accuracy of 

the created model. RMSE value should be low or nearly equal to zero for a best 

model. Root mean square error (RMSE) was calculated from the equation 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑋𝑖 − 𝑌𝑖)2

𝑁

𝑖=1

 

Where,  

Xi = observed values, 

Yi = predicted values, and 

N = number of observations. 

 

3.5 APPLICATION OF ANN MODEL FOR GROUNDWATER LEVEL 

PREDICTION 

In the present study artificial neural network (ANN) model was developed 

for predicting the groundwater level. The input data set used in this study involves 

monthly precipitation, monthly minimum temperature and maximum temperature. 

The development of ANN models using these input variables are supported by the 

researchers Javadinejad et al., 2020 and Husna et al., 2016. The output dataset is 

the monthly groundwater level data of all the selected wells. The groundwater level 

data collected from the department was depth to water level (below ground level) it 

is then converted into groundwater level with respect to mean sea level considering 

the elevation of each well location. The groundwater level data set of 15 years from 

2007 to 2021 was used for the development of ANN model. The data set was 

divided into training data set and testing data set, 75 % of the total data set was 

assigned as training data set and the remaining 25 % as testing data set. The various 

steps involved in development of ANN model for predicting groundwater level are 

given as follows: 

1. MATLAB R2016a software was used for development of ANN models  

2. The data set was normalized, in order to have the same range of values for each 

of the inputs to the ANN model. It stabilizes convergence of network weights and 

biases. Data normalization was done using equation: 

z =
x − µ

σ
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z – Normalized value 

x – each value of data to be normalised 

µ - Average of data 

𝜎  – Standard deviation of data 

3. A three-layer feed forward ANN model was constructed and backpropagation 

algorithm was used to train the network. 

 4. Levenberg–Marquardt (LM) algorithm was selected as learning algorithm. 

 5. Different combination of activation function for hidden and output layers were 

tried and finally the hyperbolic tangent activation function was selected. 

6. The number of epochs was taken as 1000 and the max fail was altered in each 

iteration until the best result was obtained. 

 7. Although the number of hidden layers and the number of neurons in those levels 

are essential components of a successful ANN architecture, trial and error was 

employed to find the best structure because there is no unifying theory for doing so. 

 8. After trial and error procedure best ANN models were selected based on the 

several performance criteria explained above and used in this study. The overall 

modelling strategies used for prediction of groundwater level is shown in Table 3.3. 

Table 3.3 Overall modelling strategies used for prediction of groundwater level 

Components function Type 

Neural Network Feed forward neural network 

Training algorithm Levenberg-Marquardt (LM) 

Training function TRAINLM 

Learning function LEARNGDM 

Transfer function Tan sigmoid 
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3.5.1 Working Environment of MATLAB Software 

The ANN models were developed using MATLAB R2016a software. It has 

matrix-based data structures, internal data types of its own, a large collection of 

functions, a platform to create scripts and functions, the ability to import and export 

data to a variety of file kinds, and more. The network manager includes all functions 

for importing inputs, targets, new networks, outputs, and network problems, among 

others. The working environment of MATLAB software used in this study is shown 

in Fig 3.12. 

 

Fig 3.12 Working environment of MATLAB software 

 

3.5.1.1 Neural network toolbox in MATLAB (nntool) 

The network manager includes all functions for importing inputs, targets, 

new networks, outputs, and network problems, among others. The “nntool” in 

MATLAB is shown in Fig 3.13. 
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Fig 3.13 Neural network toolbox in MATLAB (nntool) 

  The selection of network architecture, training function, learning function, 

performance function, number of layers, number of neurons, and transfer function 

for various layers were carried out for creating new networks after importing all the 

input and target files from workspace to network manager. The Fig 3.14 shows the 

new network creation window in MATLAB 

 

Fig 3.14 New network creation window in MATLAB 
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3.5.1.2 Training function 

Training function is used to train the neural network to recognize a certain 

input and map it to an output. There are different types of training functions like 

TRAINGD, TRAINGDM, TRAINLM, TRAINGDX, TRAINRP etc. Among these 

TRAINLM is the commonly used training function in water resources studies and 

were used by many researchers (Seo and Lee 2019). 

3.5.1.3 Learning function 

Learning is the process by which a neural network adjusts its parameters 

appropriately in response to a stimulus, producing the desired response. There are 

mainly two types of learning functions LEARNGD, LEARNGDM of which 

LEARNGDM is commonly used as per literatures (Seo and Lee 2019) and was used 

in this study. A model of a neural network in MATLAB is shown in Fig 3.15.  

 

Fig 3.15 Model of a neural network in MATLAB 

3.6 DETERMINATION OF DROUGHT INDEX 

Standardized Groundwater level Index denoted by SGI was used for the 

groundwater drought assessment in this study. SGI is a quantitative method for 

assessing groundwater level deficits over a range of time scales, reflecting the 

impact of extreme drought events on the scenario for water resources. SGI for each 

well is estimated separately using the equation (Bloomfield and Marchant, 2013) 
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SGI = 
𝑲−𝑴

𝝈  
 

 

Where, 

K - groundwater level value (wrt MSL) of the respective year 

M - mean value of all years 

σ - standard deviation 

Standardized SGI indicate the level of groundwater drought. The SGI 

highlights regions that are either drier or wetter than typical. The arbitrary 

categories of drought intensity defined for groundwater drought (Bloomfield and 

Marchant, 2013) is shown in the Table 3.4. Spatial distribution map of SGI for 

severe drought years 2013, 2016 and 2017 (April and May) months was prepared 

in ArcGIS using IDW interpolation technique. 

Table 3.4 Drought intensity categories by Bloomfield and Marchant (2013) 

SGI DROUGHT CONDITION 

SGI ≤ -1.5 Exceptional drought 

-1.5 < SGI ≤ -1.2 Extreme drought 

-1.2 < SGI ≤ -0.9 Severe drought 

-0.9 < SGI ≤ -0.6 Moderate drought 

-0.6 < SGI ≤ -0.3 Abnormally dry condition 

SGI > -0.3 Normal / no drought 

 

The workflow of groundwater level modelling and drought assessment is shown 

in Fig 3.16. 
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GWLij – GWL of respective year 

𝐺𝑊𝐿̅̅ ̅̅ ̅̅ ̅ – Mean of GWLs of all years 

𝞂GWL- Standard deviation of GWLs of all years 

Fig 3.16 Workflow of groundwater level modelling and drought assessment 

 

3.7 FUTURE PREDICTION OF GROUNDWATER LEVEL AND 

STANDARDIZED GROUNDWATER LEVEL INDEX (SGI) 

The developed ANN model in MATLAB was used for future prediction of 

monthly GWL and groundwater drought for the year 2023. MATLAB nftool was 

used to obtain the code for future prediction. Projected climate data of Precipitation, 

Max and Min temperature from CMIP6 climate model for SSP 245 scenario 

(medium scenario) was used for prediction. Once the network is well trained, then 

a relationship can be obtained between the weights and biases in a matrix format in 

MATLAB (MATLAB Matrix-only Function) for forecasting the GWL as shown in 

Fig 3.17. 
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Fig 3.17 nftool window showing MATLAB Matrix-Only function 

The projected climate data used for prediction of GWL for year 2023 is 

shown in the Table 3.4. 

Table 3.5 Projected bias corrected data of 2023 from CMIP6 climate model 

for SSP 245 scenario 

Year 2023 Precipitation (mm) Min temp (° C) Max temp (° C) 

Jan 0.74 21.64 34.92 

Feb 1.4 22.28 36.16 

Mar 3.44 23.45 37.49 

Apr 159.8 23.87 34.55 

May 145.2 24.83 33.61 

Jun 382.13 23.26 29.37 

July 379.9 23.14 30.44 

Aug 190.76 24.79 31.14 

Sept 141.29 23.71 31.98 
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Oct 202.28 23.9 31.8 

Nov 106.34 23.76 31.25 

dec 10.12 21.89 32.8 

 

The Fig 3.18 shows the window containing the neural network constants 

which can be used for the future prediction of groundwater level.  

 

Fig 3.18 MATLAB Code generated for GWL prediction 
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CHAPTER-IV  

RESULTS AND DISCUSSION 

 

 Groundwater resource is one of the most valuable and important sources of 

water in the world. It's essential to comprehend how both natural and man-made 

variables affect groundwater resources and exploitation in order to create effective 

management plans to address unsustainable use (Tillman and Leake, 2010). The 

groundwater Level is a straightforward and direct indicator of groundwater 

accessibility and availability (Tao et al., 2020). The understanding of groundwater 

level variability and trend is crucial for water resource planning in a region. 

Groundwater level fluctuation being a non-linear phenomenon, Artificial Neural 

Networks (ANN) proves to be one of the best tools for modelling non-linear 

relationship between input and output datasets in hydrology (Dawson and Wilby, 

1999). Once the groundwater level is modelled, it is easy to assess the groundwater 

drought conditions of a region using Standardized Groundwater level Index (SGI). 

The various results of the study pertaining to variability and trend analysis of 

groundwater level, modelling of groundwater level using Artificial Neural Network 

(ANN) and assessment of groundwater drought using Standardized Groundwater 

level Index (SGI) were presented and discussed under the following sub-heads. 

4.1 VARIABILITY OF GROUNDWATER LEVEL 

 The groundwater level variability of the selected wells during the period 

2007 to 2021 were studied using the statistical parameters Mean, Standard 

Deviation (SD), Coefficient of Variation (CV), Skewness and Kurtosis.  

4.1.1 Mean Monthly Groundwater level w.r.t MSL in (m) from 2007 to 2021 

The mean monthly groundwater level with respect to MSL from 2007 to 

2021 is shown in Table 4.1. For all the twelve wells the mean monthly groundwater 

level was highest in the post monsoon months (Aug and Sept) and lowest in the pre-

monsoon months (Apr and May) which indicated the rise in the water level in the 

post-monsoon period due to recharge caused by rainfall in monsoon and lowering 

of the water level in the pre-monsoon period due to increased abstraction and 
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decreased recharge. The maximum mean monthly groundwater level of 151.3 m 

was seen for the well PKD S-7 in the month of September and minimum mean 

monthly groundwater level of 61.5 m was seen for the well 129 in the month of 

May. 

4.1.2 Annual Mean Groundwater Level w.r.t MSL (m) 

The annual mean of groundwater level with respect to MSL is shown in 

Table 4.2, for majority of wells, it was lowest in the year 2017 which was due to 

reduced rainfall and recharge in the same year. The highest annual mean 

groundwater level of 150.9 m was seen for the well PKD S-7 in the year 2015 and 

lowest of 62.1 m was seen for the well 129 in the year 2016. 

4.1.3 Monthly Standard Deviation of Groundwater Level (m)   

 The standard deviation of monthly groundwater level is shown in Table.4.3. 

For majority of wells standard deviation was found higher in the month of June/July 

with values varied from 1 to 3.43 m than other months. The highest standard 

deviation of 3.81 m was found for well 142 in the month of February and the lowest 

was 0.17 m for well 160 PKD-12 in the month of July. More variation in the 

standard deviation of groundwater level is found in the June/July month which may 

be due to the rise in groundwater level by monsoon rainfall. 

4.1.4 Monthly CV (%) of Groundwater Level 

The coefficient of variation of monthly groundwater level is shown in Table 

4.4. CV of majority of wells were found highly variable in the monsoon months of 

June and July with values varied from 21.83 to 93.30 which indicated high 

groundwater level fluctuation in the respective months due to arrival of monsoon. 

The highest CV of 93.30 was seen for the well 133 in the month of July and while 

lowest of 4.32 was for the well 129 in the month of February.  

4.1.5 Skewness of Groundwater Level 

 The skewness of groundwater level of all the wells is shown in Table 4.5. It 

was found between -1.94 to 3.42, some wells showed a negatively skewed 

distribution whereas other wells showed a positively skewed distribution. The 

highest positive skewness of 3.42 was for the of the well PKD S-3 in the month of 

February and highest negative skewness of -1.94 was found for the well 129 in the 
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month of January. The distribution is extremely skewed which indicates that the 

groundwater level is highly asymmetric from the normal distribution which 

happens due to the rise and fall in the groundwater level due to the recharge by 

seasonal rainfall. The Skewness of groundwater level is represented graphically in 

Fig 4.1. 

 

 

 

Fig 4.1 Skewness of groundwater level for wells a) 139 b) PKD S-7 c) 160 

PKD-12 d) PKD S-3 e) PKD S-4 f) 133 g) 140 h) 142 i) PKD S-15 j) 128 k) 129 

and l) 160 PKD-8 
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4.1.6 Kurtosis of Groundwater Level 

  The kurtosis of groundwater level of all the wells is shown in Table 4.6. 

Some wells showed a negative value of kurtosis which indicated a light peak in the 

distribution whereas other wells showed positive value of kurtosis which indicated 

a heavy peak. The highest positive kurtosis of 12.44 was seen for the well PKD S-

3 in the month of February and the highest negative kurtosis of -1.7 was seen for 

the well 133 in November. High kurtosis indicated that the groundwater level data 

were more concentrated around the mean. The kurtosis of groundwater level is 

represented graphically in Fig 4.2. 

 

Fig 4.2 Kurtosis of groundwater level for wells a) 139 b) PKD S-7 c) 160 

PKD-12 d) PKD S-3 e) PKD S-4 f) 133 g) 140 h) 142 i) PKD S-15 j) 128 k) 129 

and l) 160 PKD-8  



Table 4.1 Mean monthly groundwater level w.r.t MSL (m) during 2007-2021 

Sl.No 

Well ID Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

1 

139 136 134.5 134.1 133.6 134.2 134.4 137.6 138.7 139.1 138.7 138 137.5 

2 

PKD S 7 149.7 149.2 148.9 148.6 148.8 149.5 150.7 151.2 151.3 151.1 150.9 150.4 

 3 160 PKD-

12 68.7 68.4 67.7 67.5 67.6 68.2 68.9 68.7 68.8 68.7 68.7 68.5 

4 

PKD S-3 72.1 71.6 70.4 69.8 69.9 71.3 73 72.9 72.7 72.6 72.6 72.3 

5 

PKD S-4 63.7 63.4 62.3 62.6 63.2 64.2 64.9 64.7 64.6 64.5 64.4 64 

6 

133 108.5 108.1 107.7 107.8 108 108.9 111.6 112 111.7 110.9 110.8 109.4 

7 

140 86 85.6 84.7 84.5 84.8 85.4 86.5 86.7 86.9 86.6 86.2 86.2 

8 

142 101.5 100.9 100.2 100.6 100.3 101.9 104.7 105.7 106 105.3 105 103.8 

9 

PKD S-15 86.7 86.1 85.9 86.1 86.1 87.3 88.2 88.6 88.6 88 87.8 86.8 

10 

128 64.1 63.6 63 62.8 62.9 64 65.2 64.9 65 64.6 64.5 64.1 

11 

129 63.1 62.3 61.9 61.6 61.5 62 63.9 64.3 64.6 64 63.8 63.2 

12 

160PKD-8 79.9 79.1 77.5 78.9 80.2 82.4 84.4 84.5 84 83.9 83.4 81.7 
 



Table 4.2 Annual mean groundwater level w.r.t MSL (m) 

Sl. 

No 

Well ID 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

1 139 138.9 138.4 138.8 138.7 139.4 134.6 136.3 138.3 136.7 134 132.3 134.9 135.1 134.7 134.5 

2 PKD S 7 150.3 150 149.8 150.2 150.7 149.9 149.6 150.1 150.9 148.9 148.2 149.8 150.1 150.6 151.4 

3 160 PKD-

12 

68.5 68.4 68.4 68.6 68.6 68.7 68 68.5 68.4 68.3 67.9 68.5 67.8 68.2 68.4 

4 PKD S-3 72.2 72.2 71.9 72.3 72.4 72 71.4 72 71.7 71.2 70.2 71.5 71.2 72 72.4 

5 PKD S-4 64 64.3 63.9 63.7 64.1 63.8 63.2 63.7 64.2 63.9 63.4 63.8 63.7 64.2 64.3 

6 133 110.3 109.6 110 110 110.3 109.3 108.9 109.4 109 108.9 109.1 109.6 109.9 109.6 110.4 

7 140 86.1 85.9 86.1 86.1 86.4 85.7 85.8 85.6 85.5 85.3 85.3 86.1 85.6 85.9 85.9 

8 142 106.5 105.2 105.4 103.9 105.3 104 103.9 103 102.4 100.5 99.4 101.3 99.5 100.6 103.5 

9 PKD S-15 87.8 87.9 87.5 86.9 87.8 86.3 86.9 86.3 87.3 86.1 85.9 87.1 86.5 87.6 88.9 

10 128 64 64.7 64.6 64.6 64.4 63.8 63.9 63.8 64.1 63.6 63.4 64.1 63.9 64 64.2 

11 129 64.4 63.2 63.5 63.4 63.8 62.6 63.3 63 62.9 62.1 62.2 63.2 62.5 62.6 62.6 

12 160PKD-8 81.2 83.2 82.6 82.4 83 81.2 80.3 79.6 81.9 80.6 80.4 82.5 81.1 82 83 

 



Table 4.3 Monthly standard deviation of groundwater level (m)   

Sl. 

No 

Well ID Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

1 139 2.83 2.28 2.87 1.99 3.44 2.82 3.43 3.28 2.95 2.45 3.11 2.98 

2 PKD S 7 1.02 0.99 1.15 1.37 1.39 1.77 1.17 0.59 0.66 0.78 1.04 1.22 

3 160 PKD-12 0.23 0.42 0.51 0.62 0.89 1 0.17 0.26 0.19 0.26 0.37 0.39 

4 PKD S-3 0.79 1.65 1.58 0.82 1.29 1.9 0.31 0.27 0.45 0.46 0.49 0.71 

5 PKD S-4 0.54 0.51 1.28 1.05 0.83 0.66 0.26 0.24 0.24 0.27 0.36 0.31 

6 133 0.42 0.28 0.89 0.3 0.4 1.54 1.35 0.7 1 1.48 1.25 1.95 

7 140 0.34 0.38 0.39 0.53 0.68 1 0.72 0.67 0.51 0.47 1.4 0.39 

8 142 4.08 3.81 3.51 3.5 2.9 3.18 2.58 1.88 1.38 2.04 2.11 2.85 

9 PKD S-15 1.55 1.32 1.51 1.85 1.41 1.8 1.34 0.99 1.06 0.77 1.16 0 .97 

10 128 0.38 0.6 0.53 0.64 0.6 1.28 0.67 0.58 0.58 0.51 0.7 0.43 

11 129 1.35 0.38 0.5 0.52 0.45 1.09 1.88 1.18 1.17 0.63 0.78 0.51 

12 160PKD-8 1.94 2.21 2.63 2.76 2.57 2.09 0.55 1.36 2.35 1.66 1.41 1.81 

 



Table 4.4 Monthly CV (%) of groundwater level 

Sl. No Wells ID Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

1 139 17.68 13.06 16.01 10.85 19.28 16.04 23.72 24.73 22.91 18.37 22.25 20.54 

2 PKD S 7 45.4 35.22 36.76 39.82 44.04 72.05 90.47 74.8 90.1 85.66 92.04 76.79 

3 160 PKD-12 17.15 26.32 22.27 24.98 37.11 55.6 15.51 20.42 16.58 19.39 27.69 26.72 

4 PKD S-3 41.87 69.39 43.53 19.64 31.73 70.6 32 24.14 34.4 31.99 34.76 42.02 

5 PKD S-4 16.59 14 27.04 23.84 21.9 23.49 12.16 10.26 9.85 10.85 14.03 10.64 

6 133 9.25 5.77 16.76 5.72 8.09 37.45 93.3 72.5 77.4 69.56 57.16 53.94 

7 140 8.55 8.69 7.33 9.58 13.03 21.85 20.49 20.48 16.16 13.89 36.59 10.23 

8 142 35.63 31.49 27.38 28.36 22.86 28.67 30.98 25.83 19.81 26.51 26.46 31.03 

9 PKD S-15 24.35 19.21 21.23 26.91 20.44 31.79 27.76 22.74 24 15.35 22.09 15.58 

10 128 9.71 13.65 10.61 12.25 11.72 31.95 24.07 18.78 19.39 15.13 19.81 10.82 

11 129 16.96 4.32 5.44 5.6 4.67 12.13 26.53 17.46 18.27 8.96 10.78 6.47 

12 160PKD-8 15.98 17.12 18.15 21.11 21.81 21.83 7.34 18.17 29.47 20.49 16.37 17.6 

 



Table 4.5 Skewness values of groundwater level 

Sl. No Wells ID Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

1 139 0.51 0.26 -1.36 0.58 -0.31 -0.08 -0.08 0.54 0.15 0.09 0.09 0.01 

2 PKD S 7 0.72 0.43 0.41 -0.69 -0.59 0.06 1.22 0.76 2.42 2.02 1.39 0.7 

3 160 PKD-12 1.42 1 0.09 0.36 0.81 1.78 0.85 0.65 1.65 0.26 1.31 1.73 

4 PKD S-3 3.03 3.42 2.04 -0.07 0.5 1.2 1.24 -0.26 1.28 -0.03 0.51 2.88 

5 PKD S-4 1.51 0.67 1.43 0.51 1.41 0.68 0.79 -0.55 0.1 -0.23 0.27 0.25 

6 133 0.08 0.02 3.09 1.09 -0.42 -1.73 0.75 1.48 0.49 0.82 -0.05 2.13 

7 140 -1.75 0.05 0.07 -0.57 -1.55 0.18 -0.23 -0.59 0.15 0.89 3.07 -0.96 

8 142 0.65 0.54 0.29 0.38 0.41 0.54 0.66 1.33 -0.31 1.41 1.63 2 

9 PKD S-15 -1.51 -1.44 -1.01 -1.23 -0.71 0.26 0.25 -0.01 -0.56 -0.27 -0.16 -0.88 

10 128 0.63 0.48 -0.11 -1.24 -0.33 0.19 0.14 -0.18 0.39 0.69 -0.64 1.15 

11 129 -1.94 0.47 -0.09 -1.13 0.19 -1.12 -0.75 -0.58 -0.83 0.73 -0.1 0.95 

12 160PKD-8 -0.7 -1.35 -0.24 -0.14 0.2 0.77 0.18 0.21 1.84 1.02 0.82 0.37 

 

 



Table 4.6 Kurtosis values of groundwater level 

Sl. 

No 

Wells ID Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

1 139 -0.92 -0.81 2.9 -1.45 2.02 0.39 -1.25 -0.95 -1.36 -1.07 -1.31 -1.22 

2 PKD S 7 -0.26 -0.44 -0.39 0.55 1 -1.42 1.19 -0.19 7.6 4.02 1.82 -0.65 

3 160 PKD-12 1.42 0.46 -1.25 1.02 0.05 2.48 0.38 -1.11 2.2 -0.08 2.02 3.72 

4 PKD S-3 10.41 12.44 4.78 -0.97 -0.31 0.79 0.85 -0.84 0.9 -0.15 -0.4 9.9 

5 PKD S-4 3.54 1.36 2.62 -0.5 3.9 0.54 -0.18 -0.68 -0.1 0.03 -0.64 -0.81 

6 133 -1.07 -0.84 11.31 4.81 -0.25 2.22 -1.29 1.96 -0.7 0.58 -1.7 6.58 

7 140 5.41 -0.59 -0.57 1.33 4.44 -0.8 -1.13 0.51 0.78 1.9 10.68 2.21 

8 142 -1.23 -1.11 -1.07 -1.21 -1.02 0.45 0.08 2.33 0.42 3.47 2.48 5.25 

9 PKD S-15 2.17 1.66 0.31 1.54 1.11 -0.24 -1.35 -0.09 -0.68 1.03 -0.9 0.56 

10 128 0.72 -0.33 -0.48 0.57 -0.49 -1.31 -0.19 -0.75 -0.18 0.01 -0.24 2.43 

11 129 3.13 0.44 0.7 1.57 -1.35 1.71 -0.5 -0.78 1.36 1.22 -0.75 1.01 

12 160PKD-8 0.93 1.45 -1.4 -1.15 -0.45 0.19 -0.65 0.05 3.83 3.04 0.16 -0.08 
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4.2 TREND ANALYSIS OF GROUNDWATER LEVEL 

 The trend analysis of groundwater levels for all the twelve wells in the study 

area during the period 2007 to 2021 was done for pre-monsoon (Mar-May), post-

monsoon (Sept-Nov) and annually using Mann-Kendall test and Sen’s slope 

estimator. The trend analysis was done in the XLSTAT software. If the P value is 

less than the α value, there exist a trend and if the slope is negative the trend is 

decreasing otherwise increasing. Halder et al., (2020) used the same software 

XLSTAT for trend analysis of groundwater level and similar results were obtained. 

4.2.1 Pre-Monsoon, Post-Monsoon and Annual Groundwater Level Trend 

The Mann-Kendall trend analysis results of pre-monsoon, post-monsoon 

and annual groundwater level are given in Table 4.7, Table 4.8 and Table 4.9 

respectively. The pre-monsoon groundwater level trend analysis results showed a 

decreasing trend in wells 129, 133 and 142 while all other wells showed no trend. 

The post-monsoon groundwater level trend analysis results showed a decreasing 

trend in well 139 and all other wells showed no trend. The annual groundwater level 

trend analysis results showed a decreasing trend in wells 129, 139 and 142 while 

all other wells showed no trend. 

Table 4.7 Mann-Kendall trend analysis of pre-monsoon groundwater level 

Sl. 

No 

Well ID S VAR(S) P α Slope Trend 

1 128 -31 408.333 0.138 0.05 -0.073 No 

2 129 -60 407.333 0.003 0.05 -0.08 Decreasing 

3 133 -43 408.333 0.038 0.05 -0.013 Decreasing 

4 139 -33 408.333 0.113 0.05 -0.298 No 

5 140 -21 408.333 0.322 0.05 -0.019 No 

6 142 -67 408.333 0.001 0.05 -0.605 Decreasing 

7 160 PKD 

12 

11 408.333 0.621 0.05 0.01 No 
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8 160 PKD 

S8 

3 408.333 0.921 0.05 0.012 No 

9 PKD S3 -11 408.333 0.621 0.05 -0.031 No 

10 PKD S7 13 408.333 0.553 0.05 0.053 No 

11 PKD S 15 -13 408.333 0.553 0.05 -0.003 No 

12 PKD S 4 4 407.333 0.882 0.05 0.004 No 

 

Table 4.8 Mann-Kendall trend analysis of  post-monsoon groundwater level 

Sl. 

No 

Well ID S VAR P α Slope Trend 

1 128 -23 408.333 0.276 0.05 -0.022 No 

2 129 -19 408.333 0.373 0.05 -0.05 No 

3 133 -11 408.333 0.621 0.05 -0.051 No 

4 139 -46 407.333 0.026 0.05 -0.37 Decreasing 

5 140 -29 408.333 0.166 0.05 -0.042 No 

6 142 -31 408.333 0.138 0.05 -0.149 No 

7 160 PKD 12 -20 407.333 0.346 0.05 -0.023 No 

8 160 PKD S8 -14 407.333 0.519 0.05 -0.042 No 

9 PKD S3 -39 408.333 0.06 0.05 -0.035 No 

10 PKD S7 11 408.333 0.621 0.05 0.015 No 

11 PKD S 15 -15 408.333 0.488 0.05 -0.044 No 

 12 PKD S 4 -32 407.333 0.125 0.05 -0.019 No 
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Table 4.9 Mann-Kendall trend analysis of annual groundwater level 

Sl. 

No 

Well ID S VAR P α Slope Trend 

1 128 -31 408.333 0.138 0.05 -0.049 No 

2 129 -59 408.333 0.004 0.05 -0.092 Decreasing 

3 133 -9 408.333 0.692 0.05 -0.02 No 

4 139 -61 408.333 0.003 0.05 -0.382 Decreasing 

5 140 -35 408.333 0.092 0.05 -0.045 No 

6 142 -73 408.333 0 0.05 -0.471 Decreasing 

7 160 PKD 

12 

-24 407.333 0.254 0.05 -0.02 No 

8 160 PKD 

S8 

-13 408.333 0.553 0.05 -0.035 No 

9 PKD S3 -29 408.333 0.166 0.05 -0.056 No 

10 PKD S7 -1 408.333 1 0.05 -0.001 No 

11 PKD S 15 -17 408.333 0.428 0.05 -0.063 No 

12 PKD S 4 -2 407.333 0.96 0.05 -0.005 No 

 

4.2.2 Spatial Distribution of Groundwater Level Trend in the Study Area 

The spatial distribution of groundwater level trend during pre-

monsoon,post-monsoon and annual is shown in Fig 4.3  (a), (b) and (c) respectively. 

From figure it is clear that during pre-monsoon two wells 133 and 142 of 

Malampuzha block and one well 129 of Palakkad block, during post-monsoon well 

139 of Chittur block and during annual period well 139 of Chittur block, 142 of 

Malampuzha block and well 129 of Palakkad block showed a decreasing trend.The 

declining trend in the grounwater level was seen in the wells located in areas of 

increased water abstraction. The areas of Chittur, Malampuzha and Palakkad blocks 

are experiencing water scarcity in extreme summer due to the declining of 

groundwater level. 
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Fig 4.3 Spatial distribution of groundwater level a) pre-monsoon, b) post-

monsoon and c) annual. 

4.3 WATER TABLE CONTOUR MAP OF THE STUDY AREA 

 The water table contour map of the study area was generated during the 

study period (2007 to 2021) in Arc GIS using IDW interpolation technique. The 

average elevation of the well locations was about 96.25 m above MSL. The ground 

level elevation varied from 67 m at well PKD S-4 of Kuzhalmannam block to 152 

m at wells 139 and PKD S-7 of Chittur block. The water table contour maps were 

a) 

b) c) 
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prepared for pre-monsoon (Fig 4.4 (a)), post-monsoon (Fig 4.4 (b)) and average 

annual (Fig 4.4 (c)) period. 

4.3.1 Pre-Monsoon, Post-Monsoon and Average Annual Water Table Contour 

Map 

The pre-monsoon water table elevation of wells varied from 148.66 m in 

well PKD S-7 of Chittur block to 61.66 m in well 129 of Palakkad block as shown 

in Fig 4.4 (a). The post-monsoon water table elevation of wells varied from 151.21 

m in well PKD S-7 of Chittur block to 64.16 m in well 129 of Palakkad block as 

shown in Fig 4.4 (b). The average annual water table elevation of wells varied from 

150.02 m in well PKD S-7 of Chittur block to 63.02 m in well 129 of Palakkad 

block as shown in Fig 4.4 (c).                             

 

  

a) 
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Fig 4.4 Water table contour map (a) Pre-monsoon, (b) Post-monsoon and (c) 

average annual  

4.4 GROUNDWATER LEVEL FLUCTUATION 

Groundwater level fluctuation was calculated as the difference between 

post- monsoon and pre-monsoon groundwater levels. The average annual seasonal 

fluctuation of groundwater level for the study period is shown in Fig 4.5. The 

average annual seasonal fluctuation of groundwater level varied from 1 to 5 m at 

different locations of the study area. The groundwater level fluctuation was 

classified into five groundwater level fluctuation zones viz; (i) 1 m to 2 m, (ii) 2 m 

to 3 m, (iii) 3 m to 4 m, (iv) 4 m to 5 m. The major portion of the study area was 

found to have a groundwater level fluctuation of 2 m to 3 m, which comprises of 

well PKD S-4 of Kuzhalmannam block, wells PKD S-15 and 142 of Malampuzha 

block. A small portion of the study area was found to have a groundwater level 

fluctuation of 1 m to 2 m, which comprises of wells PKD S-3 and 160 PKD-12 of 

Kuzhalmannam block, well 129 of Palakkad block, well 133 of Malampuzha and 

well 139 of Chittur block, which indicated less water abstraction in those wells. The 

portion with 4 m to 5 m groundwater level fluctuation included the wells 140 and 

160 PKD-8 of Malampuzha block and well PKD S-7 of Chittur block, which is due 

to the higher elevation and excess usage of groundwater. The well 128 of Palakkad 

block showed a groundwater level fluctuation of 3 m to 4 m. 

c) b) 
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Fig 4.5 Average annual seasonal fluctuation of groundwater 

level 

4.5 DEVELOPMENT OF ANN MODEL FOR GROUNDWATER LEVEL 

PREDICTION 

 Groundwater level fluctuation is non-linear phenomenon; hence the soft 

computing technique ANN was used for modelling the groundwater level. 

Modelling was done using MATLAB R2016a software. Precipitation, minimum 

temperature and maximum temperature were used as the input data whereas 

observed groundwater level was taken as the target data for the development of 

ANN model. Similar input variables and target variables were used in a study 

conducted by Javadinejad et al., (2020) and Husna et al., (2016) and satisfactory 

results were obtained. These models offer a reasonable prediction of the future trend 

of the output. Models were developed separately for each individual observation 

wells. Thus, twelve ANN models were developed in this study.  

 The data were divided into two groups, viz, training dataset and testing 

dataset. Monthly data from 2007 to 2021was used, which consist of 180 datasets 
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out of which 70% was used for training and 30% was used for testing. Using 

training dataset, different ANN structures were trained. Several ANN structures 

with feed forward back propagation algorithm, Levenberg-Marquardt learning 

algorithm and hyperbolic tangent as an activation function were tried and their 

performance in meeting the desired output were monitored. Thus, the best model 

for each well were selected. The study conducted by Seo and lee (2019) used feed 

forward back propagation algorithm, Levenberg-Marquardt learning algorithm and 

hyperbolic tangent as an activation function to develop ANN model for 

groundwater level prediction and similar results were obtained. 

 The performance of ANN models for the training and testing period were 

analysed based on values of correlation coefficient (r), coefficient of determination 

(R2), Mean Square Error (MSE) and Root Mean Square Error (RMSE). The ANN 

structure with maximum r & R2 and minimum RMSE & MSE was selected as the 

best model for each well. The most suitable configuration and ANN structure, feed 

forward network trained with the Levenberg– Marquardt function is shown in Table 

4.10. 

Table 4.10 The developed ANN configuration and its structure for 

groundwater level prediction. 

Well ID Training Testing 
 

Best ANN structure Best ANN structure 

160 PKD-

12 

3-10-1 

 

3-10-1 

 

PKD S-3 3-10-1 

 

3-10-1 

 

PKD S-4 3-10-1 

 

3-15-1 
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128 3-12-1 

 

3-10-1 

 

129 3-10-1 

 

3-14-1 

 

160 PKD-8 3-10-1 

 

3-10-1 

 

133 3-13-1 

 

3-10-1 

 

140 3-12-1 

 

3-12-1 

 

142 3-10-1 

 

3-13-1 

 

PKD S-15 3-10-1 

 

3-10-1 

 

139 3-13-1 

 

3-10-1 

 
 

PKD S-7 3-10-1 

 

3-10-1 
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ANN structures show three layers in which 1st layer contain three neurons 

that indicates three input variables, 2nd layer is hidden layer and number of neurons 

in the hidden layer were altered in order to get the best ANN structure, 3rd layer 

output layer which contains only one neuron due to the single output variable as 

groundwater level. Hence, the model configuration for first well 160 PKD-12 is 

represented as 3-10-1 for training period and 3-10-1 for testing period. The number 

of hidden layers might vary during training and testing period; accordingly, the 

model configuration will also vary for example for well PKD S-4 the model during 

training period is represented as 3-10-1 whereas model during testing period is 

represented as 3-15-1. The models developed are saved in MATLAB software and 

can be recalled at any time for prediction. 

4.5.1 Performance Evaluation of ANN Models 

 In order to assess the performance of the developed model, various 

statistical performance indicators viz, correlation coefficient (r), coefficient of 

determination (R2) and Root Mean Square Error (RMSE) were assessed and the 

results are shown in Table 4.11. 

Table 4.11 Performance indicators of ANN models developed for different 

wells 

 

Well ID 

Training dataset Testing dataset 

r R2 RMSE 

(m) 

r R2 RMSE 

(m) 

160 PKD-12 0.87 0.76 0.34 0.87 0.76 0.17 

PKD S-3 0.83 0.69 0.43 0.88 0.77 0.17 

PKD S-4 0.92 0.85 0.68 0.9 0.81 0.26 

128 0.85 0.72 0.6 0.9 0.8 0.31 

129 0.85 0.72 0.44 0.93 0.87 0.45 

160 PKD-8 0.87 0.76 0.34 0.89 0.8 0.17 

133 0.87 0.76 0.48 0.91 0.83 0.22 

140 0.84 0.71 0.4 0.87 0.75 0.33 
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142 0.84 0.71 0.53 0.89 0.8 0.34 

PKD S-15 0.84 0.71 0.42 0.89 0.79 0.35 

139 0.84 0.71 0.54 0.74 0.55 0.38 

PKD S-7 0.86 0.74 0.43 0.89 0.8 0.11 

 

The value of r and R2 highest and the values of RMSE lowest indicates that 

the performance indicators are in the acceptable range. The maximum r (0.92 and 

0.93) and R2 (0.85 and 0.87) were found for well PKD S-4 and 129 during training 

and testing period respectively. The minimum RMSE value was 0.34 m for wells 

160 PKD-12 and 160 PKD-8 during training period and 0.17 m in well PKD S-7 

during testing period respectively.  

4.5.2 Regression Plots of Different ANN Models for Training and Testing 

Dataset 

 MATLAB plots the linear regression of targets relative to outputs and helps 

to visualize their linear relationships which is given by the regression plots. A high 

value of R (approximately equal to 1) in the regression plot indicates good 

correlation between output and target. The regression plots of different ANN 

models for training and testing dataset are shown in Fig 4.6 (a) to Fig 4.6 (l). 

             

Fig 4.6 (a) Regression plot for training and testing period of well 160 PKD-12 
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Fig 4.6 (b) Regression plot for training and testing period of well PKD S-3 

              

Fig 4.6 (c) Regression plot for training and testing period of well PKD S-4 

             

Fig 4.6 (d) Regression plot for training and testing period of well 128 
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Fig 4.6 (e) Regression plot for training and testing period of well 129 

             

Fig 4.6 (f) Regression plot for training and testing period of well 160 PKD 8 

             

Fig 4.6 (g) Regression plot for training and testing period of well 133 
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Fig 4.6 (h) Regression plot for training and testing period of well 140 

             

Fig 4.6 (i) Regression plot for training and testing period of well 142 

             

Fig 4.6 (j) Regression plot for training and testing period of well PKD S-15 
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Fig 4.6 (k)Regression plot for training and testing period of well 139 

             

Fig 4.6 (l) Regression plot for training and testing period of well PKD S-7 

4.5.3 Observed vs ANN Predicted Groundwater Level Plots of Different 

Wells 

The observed and ANN predicted groundwater level for training and testing 

datasets were plotted and are shown in the Fig 4.7 (a) to Fig 4.7 (l). The observed 

and ANN predicted groundwater level for sample wells from each block is given in 

Appendix-II. It was observed that the predicted groundwater level was in good 

agreement with the observed groundwater level. This showed that Artificial Neural 

Network (ANN) had ample potential to predict the groundwater level with 

reasonable deviation from the observed values of groundwater level. 
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Fig. 4.7 (a) Observed vs ANN predicted groundwater level of well 160 PKD-12 

 

Fig. 4.7 (b) Observed vs ANN predicted groundwater level plot of well PKD S-3 

 

Fig. 4.7 (c) Observed vs ANN predicted groundwater level plot of well PKD S-4 
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Fig. 4.7 (d) Observed vs ANN predicted groundwater level plot of well 128 

 

Fig. 4.7 (e) Observed vs ANN predicted groundwater level of well 129 

 

Fig. 4.7 (f) Observed vs ANN predicted groundwater level of well 160 PKD-8 
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Fig. 4.7 (g) Observed vs ANN predicted groundwater level of well 133 

 

Fig. 4.7 (h) Observed vs ANN predicted groundwater level of well 140 

 

Fig. 4.7 (i) Observed vs ANN predicted groundwater level of well 142 
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Fig. 4.7 (j) Observed vs ANN predicted groundwater level of well PKD S-15 

 

Fig. 4.7 (k) Observed vs ANN predicted groundwater level of well 139 

 

Fig. 4.7 (l) Observed vs ANN predicted groundwater level of well PKD S-7 
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4.6 GROUNDWATER DROUGHT ASSESSMENT 

4.6.1 Estimation of SGI Values for Different Wells 

 Groundwater drought was assessed using Standardized Groundwater level 

Index (SGI). The SGI was estimated using observed groundwater level and also the 

ANN predicted groundwater level, and were compared. The SGI was estimated for 

pre-monsoon months Jan, Feb, Mar, Apr, May of the study period (2007 to 2017) 

for all the twelve wells as drought was more severe in these months than other 

months. The value of SGI indicates the drought severity, more the negative value, 

more the drought severity. The following tables shows the SGI values of different 

wells in the study area. Standardized Groundwater level Index was used by Halder 

et al., (2020) and Seo and Lee (2019) for groundwater drought assessment and 

similar results were obtained. 

 The SGI values estimated using observed groundwater level for the wells 

160 PKD-12, PKD S-3 and PKD S-4 of Kuzhalmannam block are shown in Table 

4.12, Table 4.13 and Table 4.14 respectively. The SGI values estimated using the 

ANN predicted groundwater level is given in Appendix-VI.  For well 160 PKD-12 

the highest negative SGI was -3.7 found in May 2013. For well PKD S-3 the highest 

negative SGI was -4 found in March 2018. Similarly, for the well PKD S-4 the 

highest negative SGI was -3.3 found in April 2013 which indicated the highest 

exceptional drought condition of the respective regions. 

Table 4.12 Estimated SGI values of well 160 PKD-12 

Well 160 PKD-12 Jan Feb Mar Apr May 

2007 0.7 0.3 -1.1 -1.5 -1.0 

2008 0.6 0.6 -0.1 -0.8 -1.4 

2009 0.4 -0.1 -0.6 -1.2 -1.5 

2010 0.5 0.6 -1.0 -1.3 -0.6 

2011 0.7 0.7 -0.2 -0.7 -1.1 

2012 0.6 0.6 0.1 -0.6 0.1 

2013 0.6 0.0 -1.3 -3.2 -3.7 
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2014 0.2 0.4 -1.3 -1.1 0.2 

2015 0.7 -1.3 -2.1 0.4 0.3 

2016 0.6 -0.3 -1.8 -2.2 0.4 

2017 -0.4 -0.5 -1.9 -1.3 -2.4 

2018 0.5 0.3 -0.9 -0.1 -0.1 

2019 -0.2 -1.0 -1.4 -2.0 -3.2 

2020 0.6 0.1 -0.2 -1.9 -1.1 

2021 0.3 -0.2 -0.2 -0.8 -1.0 

 

Table 4.13 Estimated SGI values of well PKD S-3 

Well PKD S-3 Jan Feb Mar Apr May 

2007 0.5 0.2 -0.5 -1.2 -1.0 

2008 0.5 0.5 -1.0 -0.5 -1.6 

2009 0.6 0.2 -0.1 -1.2 -1.6 

2010 0.3 0.4 -1.0 -1.3 -0.6 

2011 0.7 0.5 -0.1 -0.5 -0.7 

2012 0.5 0.4 -0.3 -1.2 -0.4 

2013 0.0 -0.5 -1.2 -1.9 -2.5 

2014 0.2 0.5 -0.8 -1.1 -0.4 

2015 0.1 -0.2 -1.2 -0.9 -0.8 

2016 0.3 0.2 -1.4 -1.9 -1.4 

2017 -1.5 -3.9 -2.3 -2.1 -2.9 

2018 0.4 -0.1 -4.0 -1.4 -1.3 

2019 0.0 0.0 -0.6 -1.9 -2.3 

2020 0.5 0.3 -0.3 -1.6 -0.8 

2021 0.3 0.4 -0.2 -0.5 0.2 
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Table 4.14 Estimated SGI values of well PKD S-4 

Well PKD S-4 Jan Feb Mar Apr May 

2007 0.2 -0.4 -0.9 -2.1 -0.8 

2008 0.2 -0.1 0.0 0.1 -0.5 

2009 -0.2 -0.8 -1.4 -1.4 -0.7 

2010 -0.2 -0.6 -3.0 -3.0 -1.0 

2011 -1.6 -0.6 -0.5 -0.6 -0.9 

2012 0.1 0.0 -0.7 -1.3 -0.7 

2013 -0.7 -1.6 -2.2 -3.3 -2.9 

2014 -0.3 -0.6 -1.7 -1.5 -0.8 

2015 -0.5 -1.3 0.0 0.4 1.2 

2016 -0.4 -1.5 -1.8 -0.2 0.3 

2017 -1.2 -1.9 -2.0 -1.3 -1.2 

2018 -0.4 -0.5 -0.4 0.2 0.4 

2019 0.0 -0.2 -2.6 -1.0 -0.7 

2020 0.1 0.4 -0.1 -0.5 -0.2 

2021 0.1 -0.2 -0.3 -0.3 0.4 

 

 The SGI values estimated using observed groundwater level for the wells 

128, 129 and 160 PKD-8 of Palakkad block are shown in Table 4.15, Table 4.16 

and Table 4.17 respectively. For well 128, the highest negative SGI was -2.1 found 

in April 2017. For well 129, the highest negative SGI was -1.6 found in May 2019. 

Similarly, for well 160 PKD-8, the highest negative SGI was -2.4 found in March 

2014 which indicated the highest exceptional drought condition of the respective 

regions. 

Table 4.15 Estimated SGI values of well 128 

Well 128 
 

Jan Feb Mar Apr May 

2007 0.1 -1.2 -1.7 -1.7 -1.2 

2008 -0.3 -0.4 -0.1 0.3 0.0 
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2009 0.2 -0.2 -0.6 -0.8 -0.5 

2010 0.3 -0.1 -0.4 -0.7 -0.4 

2011 0.2 -0.2 0.0 -0.4 -1.3 

2012 -0.5 -0.6 -0.6 -0.9 -0.5 

2013 -1.6 -1.3 -1.7 -1.7 0.8 

2014 -0.8 -1.3 -1.6 -1.6 -0.7 

2015 -0.8 -1.3 -1.4 -0.8 1.2 

2016 0.0 -1.1 -1.7 -1.4 -1.1 

2017 -1.4 -1.9 -1.7 -2.1 -2.1 

2018 -0.2 -1.5 -1.5 -1.4 0.6 

2019 -0.2 -0.5 -1.1 -1.4 -1.7 

2020 0.2 0.4 -1.0 -1.7 -1.6 

2021 0.3 0.3 -0.8 -1.6 -0.6 

 

  Table 4.16 Estimated SGI values of well 129 

Well 129 
 

Jan Feb Mar Apr May 

2007 2.5 -0.2 -0.6 -0.7 -0.8 

2008 0.1 -0.3 -0.1 0.0 -0.8 

2009 -0.2 -0.5 -0.8 -1.1 -1.2 

2010 0.2 -0.1 -0.5 -0.7 -0.6 

2011 0.1 -0.3 0.0 -0.5 -0.7 

2012 -0.2 -0.5 -0.6 -0.9 -1.0 

2013 -0.6 -0.8 -0.9 -1.2 -0.9 

2014 -0.1 -0.3 -0.7 -0.8 -0.9 

2015 -0.2 -0.6 -0.6 -0.8 -0.9 

2016 -0.4 -0.7 -0.9 -1.2 -1.3 

2017 -1.0 -1.1 -1.5 -1.3 -1.5 

2018 -0.6 -0.6 -1.1 -1.3 -1.3 
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2019 -0.5 -0.7 -1.2 -1.4 -1.6 

2020 0.1 -0.4 -0.7 -1.0 -1.4 

2021 -0.4 -0.7 -1.1 -1.4 -1.4 

  

   Table 4.17 Estimated SGI values of well 160 PKD-8 

Well 160 PKD-8 
 

Jan Feb Mar Apr May 

2007 -0.2 -0.9 -2.1 -1.9 -1.4 

2008 0.4 0.8 0.2 -0.4 -0.4 

2009 -0.2 -0.5 -0.6 -0.7 -0.1 

2010 0.0 -0.9 -1.3 -1.2 -0.1 

2011 -0.8 0.7 -0.2 0.6 -0.9 

2012 -0.6 -1.1 -1.4 -0.3 -0.2 

2013 -1.5 -1.6 -2.3 -2.2 -2.1 

2014 -1.4 -1.6 -2.4 -1.0 0.4 

2015 -1.3 -1.5 -2.3 0.6 0.7 

2016 -0.8 -1.1 -2.2 -2.0 -0.7 

2017 -0.9 -1.4 -2.0 -1.9 -1.5 

2018 -0.8 -1.0 -0.4 -0.3 0.2 

2019 -0.9 -1.2 -1.3 -1.5 -1.0 

2020 -0.1 -0.7 -0.8 -1.4 -0.4 

2021 -0.2 -0.6 -0.9 -0.3 0.9 

 

 The SGI values estimated using observed groundwater level for the wells 133, 

140, 142 and PKD S-15 are shown in Table 4.18, Table 4.19, Table 4.20 and Table 

4.21 respectively. For well 133, the highest negative SGI was -2.6 found in 

February 2015. For well 140, the highest negative SGI was -2.2 found in April 2007. 

For well 142, the highest negative SGI was -2.3 found in February and March 2019. 

For well PKD S-15, the highest negative SGI was -2 found in May 2017 which 

indicated the highest exceptional drought conditions of the respective regions. 
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   Table 4.18 Estimated SGI values of well 133 

Well1 133 
 

Jan Feb Mar Apr May 

2007 -0.4 -0.7 -0.8 -1.0 -0.9 

2008 0.3 -0.6 -0.7 -0.9 -0.9 

2009 -0.6 -0.8 -1.0 -0.8 -0.8 

2010 -0.8 -1.0 -1.0 -0.8 -0.8 

2011 -0.7 -0.5 -0.8 -0.6 1.6 

2012 -0.6 -0.7 -1.0 -1.0 -0.7 

2013 -0.9 -0.9 -1.0 -1.0 -0.6 

2014 -1.0 -1.1 -1.0 -0.6 -0.7 

2015 -0.9 -2.6 -1.4 -0.6 1.1 

2016 -0.9 -1.0 -1.1 -0.9 -0.9 

2017 -0.8 -0.9 -1.0 -0.9 -1.0 

2018 -0.8 -0.9 -1.0 -0.9 -0.5 

2019 -0.7 -1.0 -1.0 -0.9 -1.2 

2020 -0.3 -0.7 -1.0 -1.0 -1.1 

2021 -0.3 -0.6 -0.9 -0.7 -0.4 

 

Table 4.19 Estimated SGI values of well 140 

Well 140 Jan Feb Mar Apr May 

2007 0.3 -0.3 -0.8 -2.2 -1.2 

2008 0.3 0.0 -0.4 -0.8 -1.0 

2009 0.3 -0.3 -0.8 -1.0 -0.5 

2010 0.3 -0.1 -1.0 -0.9 -0.9 

2011 0.2 0.4 -0.3 -0.1 -0.9 

2012 0.1 -0.2 -0.8 -1.0 -1.1 

2013 -0.4 -0.7 -1.5 -1.9 -1.4 
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2014 0.0 -0.5 -1.3 -1.5 -1.5 

2015 -0.1 0.4 -1.5 -1.5 0.9 

2016 -0.1 -0.7 -1.7 -2.0 -1.5 

2017 -0.2 -0.9 -1.5 -1.5 -1.7 

2018 0.0 -0.2 -1.2 -1.3 -0.7 

2019 0.1 -0.1 -0.9 -1.4 -2.0 

2020 0.2 0.0 -0.8 -1.4 -0.9 

2021 0.2 -0.1 -1.0 -1.4 -1.1 

 

Table 4.20 Estimated SGI values of well 142 

Well 142 Jan Feb Mar Apr May 

2007 0.7 0.6 0.5 0.5 0.4 

2008 0.9 0.8 0.7 0.6 -0.1 

2009 0.6 0.2 0.2 0.2 0.1 

2010 0.8 0.6 -0.9 -1.1 -0.5 

2011 0.1 0.0 0.2 0.4 0.1 

2012 0.5 0.1 -0.4 -0.1 -0.1 

2013 -0.2 -0.2 -0.6 -0.9 -0.7 

2014 0.2 -0.3 -0.5 -0.1 -1.2 

2015 -0.6 -1.4 -0.8 0.0 -1.0 

2016 -1.0 -0.3 -0.5 -0.7 -0.9 

2017 -2.1 -2.1 -2.2 -2.2 -1.8 

2018 -1.7 -1.4 -1.8 -1.8 -1.3 

2019 -2.2 -2.3 -2.3 -2.2 -2.1 

2020 -2.1 -2.2 -2.2 -1.7 -2.0 

2021 0.3 -0.7 -1.2 -0.8 -0.2 
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Table 4.21 Estimated SGI values of well PKD S-15 

Well PKD S-15 Jan Feb Mar Apr May 

2007 1.0 0.1 0.0 -1.5 -1.0 

2008 0.4 1.0 1.5 2.1 -0.8 

2009 0.0 -0.5 -0.6 -0.7 -0.9 

2010 -0.5 -1.1 -1.6 -1.9 -0.7 

2011 3.5 0.4 -0.2 -0.1 -0.3 

2012 -1.0 -1.3 -1.0 -0.8 -0.9 

2013 -1.3 -1.0 -0.9 -1.6 -0.9 

2014 -1.1 -1.4 -1.7 0.8 -1.6 

2015 -0.7 -1.1 -1.5 -0.5 -0.4 

2016 -1.0 -1.2 -1.6 -1.0 -0.5 

2017 -0.6 -1.2 -1.5 -1.0 -2.0 

2018 -0.6 -0.9 -1.5 -1.6 0.6 

2019 -1.1 -1.0 -1.3 -1.9 -1.7 

2020 -0.7 -1.2 0.4 -0.2 -0.1 

2021 0.2 0.1 0.1 1.1 1.3 

 

 The SGI values estimated using observed groundwater level for the wells 

139 and PKD S-7 are shown in Table 4.22 and Table 4.23 respectively. For well 

139, the highest negative SGI was -2.7 found in May 2017. For well PKD S-7, the 

highest negative SGI was -2.5 found in April and May 2017 which indicated the 

highest exceptional drought condition of the respective regions. 

Table 4.22 Estimated SGI values of well 139 

Well 139 Jan Feb Mar Apr May 

2007 0.6 0.2 -0.1 -0.2 -0.5 
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2008 0.8 0.4 0.1 -0.3 -0.3 

2009 0.6 -0.1 -0.2 -0.3 -0.5 

2010 0.7 0.2 -0.5 -0.4 0.2 

2011 0.7 0.3 -0.2 -0.4 -0.5 

2012 0.8 -0.8 -1.1 -0.3 -0.7 

2013 -1.6 -1.5 -1.4 -0.6 -0.4 

2014 -0.3 -0.3 1.6 -0.5 -0.6 

2015 -0.3 -0.7 -0.7 -0.3 0.3 

2016 -0.3 -0.7 -1.1 -1.3 -1.3 

2017 -1.5 -1.8 -1.7 -1.7 -2.7 

2018 -0.9 -1.1 -1.4 -1.7 -1.6 

2019 -0.1 -0.3 -0.8 -1.2 1.7 

2020 0.0 -0.7 -0.8 -1.2 -1.5 

2021 -0.9 -1.1 -1.6 -1.5 -1.1 

 

Table 4.23 Estimated SGI values of well PKD S-7 

PKD S-7 Jan Feb Mar Apr May 

2007 0.2 -0.3 -0.6 -1.2 -1.1 

2008 0.2 -0.1 -0.4 -0.8 -0.9 

2009 -0.2 -0.7 -1.0 -1.3 -1.8 

2010 0.3 -0.1 -0.5 -0.8 -0.5 

2011 0.2 -0.1 -0.5 -0.9 -0.7 

2012 0.3 0.0 -0.4 -0.7 -0.8 

2013 -1.0 -1.2 -1.7 -2.0 -1.3 

2014 -0.8 -1.1 -1.3 -1.5 -0.1 

2015 -0.2 -0.5 0.3 1.0 1.3 
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2016 -0.3 -0.7 -1.1 -1.7 -1.2 

2017 -1.6 -1.9 -2.2 -2.5 -2.5 

2018 -1.3 -1.4 -2.0 -1.9 -1.7 

2019 -0.2 -1.1 -0.6 -1.1 -0.9 

2020 0.7 0.2 -0.1 -0.3 -0.5 

2021 0.7 0.5 0.5 0.6 0.7 

 

4.6.2 Variation of SGI in the Pre-Monsoon Months 

 The variation of SGI in the pre-monsoon months of Jan, Feb, Mar, Apr and 

May for all wells of the study area are shown graphically in the Fig 4.8 (a) to Fig 

4.8 (l). It was found that SGI values were more negative in the Mar, Apr and May 

months which indicated severe drought in these months compared to other months, 

it is due to the excess usage and reduced recharge.  

 

Fig 4.8 (a) SGI values of well 160 PKD-12 

 

Fig 4.8 (b) SGI values of well PKD S-3 
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Fig 4.8 (c) SGI values of well PKD S-4 

 

Fig 4.8 (d) SGI values of well 139 

 

Fig 4.8 (e) SGI values of well PKD S-7 
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Fig 4.8 (f) SGI values of well 128 

 

Fig 4.8 (g) SGI values of well 129 

 

Fig 4.8 (h) SGI values of well 160 PKD-8 
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Fig 4.8 (i) SGI values of well 128 

 

Fig 4.8 (j) SGI values of well 140 

 

Fig 4.8 (k) SGI values of well 141 
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Fig 4.8 (l) SGI values of well PKD S-15 

4.6.3 Comparison of SGI Values Estimated by ANN Model and Observed 

Groundwater Level Data 

 The graphical representation of SGI values estimated by observed 

groundwater level data vs ANN predicted groundwater level data is shown in Fig 

4.9, Fig 4.10, Fig 4.11 and Fig 4.12. From the figures it is clear that the SGI values 

estimated by ANN predicted groundwater level data were in good agreement with 

the SGI values estimated by observed groundwater level data which indicated the 

effectiveness of ANN modelling. 

       

Fig 4.9 SGI values estimated by ANN model and observed groundwater level 

data of well 160 PKD-12 of Kuzhalmannam block 
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Fig 4.10 SGI values estimated by ANN model and observed groundwater 

level data of well 160 PKD-8 Palakkad block 

     

Fig 4.11 SGI values estimated by ANN model and observed groundwater 

level data of well 140 of Malampuzha block 

     

Fig 4.12 SGI values estimated by ANN model and observed groundwater 

level data of well 139 of Chittur block 

4.6.4 Spatial Distribution of SGI Values in the Study Area 

 Estimated SGI values indicated that the years 2013, 2016 and 2017 were 

severe drought years since the SGI values of those years were more negative for 

almost all the wells. So, the spatial distribution map of SGI values of the study area 
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was made for April and May months of those three years. The spatial distribution 

map was created in ArcGIS using IDW interpolation technique.  

 The Fig 4.13 shows the spatial distribution of SGI values during April 2013. 

It was found that the SGI value ranged from -3.29 to -0.6, that is from exceptional 

to moderate drought condition in the area. Exceptional drought was seen in the 

wells 160 PKD-12, PKD S-3 and PKD S-4 of Kuzhalmannam block, well 128 and 

160 PKD -8 of Palakkad block, wells 140 and PKD S-15 of Malampuzha block and 

well PKD S-7 of Chittur block. The Fig 4.14 shows the spatial distribution of SGI 

values during May 2013. It was found that the SGI value ranges from -3.69 to 0.79, 

that is from exceptional to no drought condition in the area. Exceptional drought 

was seen in the wells 160 PKD-12, PKD S-3 and PKD S-4 of Kuzhalmannam block 

and well 160 PKD -8 of Palakkad block. 

                  

 

 

 The Fig 4.15 shows the spatial distribution of SGI values during April 2016. 

It was found that the SGI value ranges from -2.19 to -0.20, that is from exceptional 

to no drought condition in the area. Exceptional drought was seen in the wells 160 

PKD-12 and PKD S-3 of Kuzhalmannam block and well PKD S-7 of Chittur block. 

Fig 4.13 Spatial distribution of 

SGI during April 2013 

 

Fig 4.14 Spatial distribution of 

SGI during May 2013 
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The Fig 4.16 shows the spatial distribution of SGI values during May 2016. It was 

found that the SGI value ranges from -1.49 to 0.39, that is from exceptional to no 

drought condition in the area. Exceptional drought was seen in the well 140 of 

Malampuzha block and extreme drought was seen in the well PKD S-3 of 

Kuzhalmannam block and wells 139 and PKD S-7 of Chittur Block. 

         

 

 

The Fig 4.17 shows the spatial distribution of SGI values during April 2017. 

It was found that the SGI value ranges from -2.49 to -0.90, that is from exceptional 

to severe drought condition in the area. Exceptional drought was seen in the well 

PKD S-3 of Kuzhalmannam block, wells 140 and 142 of Malampuzha block, wells 

128 and 160 PKD-8 of Palakkad block and wells 139 and PKD S-7 of Chittur block. 

The Fig 4.18 shows the spatial distribution of SGI values during May 2017. It was 

found that the SGI value ranges from -2.89 to -1.00, that is from exceptional to 

severe drought condition in the area. From the figure it is clear that exceptional 

drought was seen in the wells PKD S-3 and 160 PKD-12 of Kuzhalmannam block, 

wells 140, 142, PKD S-15 of Malampuzha block, wells 128, 129 and 160 PKD-8 

of Palakkad block and wells 139 and PKD S-7 of Chittur block. 

Fig 4.15 Spatial distribution 

of SGI during April 2016 

 

Fig 4.16 Spatial distribution 

of SGI during May 2016 
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4.7 FUTURE PREDICTION OF GROUNDWATER LEVEL AND FORECAST 

OF GROUNDWATER DROUGHT FOR THE YEAR 2023 

 Future prediction of groundwater level was done for the year 2023 for two 

drought effected wells, well 142 of Malampuzha block and well 160 PKD-12 of 

Kuzhalmannam block. The forecasted groundwater drought index was also 

estimated for the same wells 142 and 160 PKD-12 for the year 2023. 

  

Fig 4.19 Monthly predicted groundwater level (bgl) of well 142  
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Fig 4.17 Spatial distribution of 

SGI during April 2017 

 

Fig 4.18 Spatial distribution 

of SGI during May 2017 
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 The Fig 4.19 shows the monthly groundwater level (bgl) of well 142 of 

Malampuzha block for the year 2023. The groundwater level (bgl) was lowest in 

the monsoon period of June and July which indicated that the water table is raised 

due to recharge during the period. But in the pre-monsoon and post-monsoon 

months, the groundwater level (bgl) was high which indicated a lowered water table 

during the period due to lack of recharge by precipitation. 

 

Fig 4.20 Monthly forecasted SGI values of well 142 for the year 2023 

 The Fig 4.20 shows the monthly SGI values of well 142 for the year 2023. It 

was found that the SGI value was more negative in the March, April and May 

months which indicated that the drought severity is more in those months. But in 

monsoon months June and July, the SGI value showed more positive value 

indicated no drought condition in those periods.  
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Fig 4.21 Monthly predicted groundwater level (bgl) of well 160 PKD-12  

 The Fig 4.21 shows the monthly groundwater level (bgl) of well 160 PKD-

12 of Kuzhalmannam block for the year 2023. The groundwater level (bgl) was 

lowest in the monsoon period of June and July which indicated that the water table 

is raised due to recharge during the period and in the pre-monsoon and post-

monsoon months, the groundwater level (bgl) was high which indicated a lowered 

water table during the period due to lack of recharge by precipitation. 

 

Fig 4.22 Monthly forecasted SGI values of well 160 PKD-12 for the year 2023 

 The Fig 4.22 shows the monthly SGI values of well 160 PKD-12 for the 

year 2023. It was found that the SGI value was more negative in the March, April 
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and May months which indicated that the drought severity is more in those months. 

But in monsoon months June and July, the SGI value showed more positive value 

indicated no drought condition in those periods. 

 From the above results, it could be concluded that variability and trend 

analysis of groundwater level is essential for water resource planning and 

management. It also gives an overall idea about the groundwater level status of the 

region. Modelling of groundwater level makes a better and easier understanding of 

the groundwater level. ANN is a best soft computing technique which can model 

non-linear relationship between input and output. Hence, groundwater level can be 

best modelled by ANN. Drought intensity can be well quantified by drought 

indices. SGI is found to be a proven communication tool to quantify the 

groundwater drought of the area. Using SGI, the areas that are more drought 

effected or drought prone could be identified and appropriate management practices 

could be applied in the region. 
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CHAPTER-V  

SUMMARY AND CONCLUSIONS 

Groundwater is one of the most precious and significant sources of water in 

the world and is essential to many aspects of human life, including agriculture, the 

growth of industry, and the provision of drinking water. The study entitled “Spatio-

Temporal Groundwater Drought Assessment Based on ANN Model and GIS for a 

Sub-basin of Bharathapuzha” was focussed to study the variability and trend 

analysis of groundwater level, to model groundwater level using ANN and to assess 

the groundwater drought using Standardised Groundwater level Index (SGI).  

The study was conducted in Kalpathypuzha sub-basin of Bharathapuzha. 

Twelve observation wells, evenly distributed in Kuzhalmannam, Palakkad, 

Malampuzha and Chittur blocks of Palakkad district were selected for the study. 
The data on precipitation, maximum and minimum temperature, and groundwater 

level were acquired for a period of 15 years from 2007 to 2021. The groundwater 

level variability was analyzed by various descriptive statistics like mean, standard 

deviation, coefficient of variation, skewness and kurtosis. The groundwater level 

trend was estimated by Mann- Kendall test and Sens slope estimator. ANN models 

were developed separately for each observation well to predict the groundwater 

level using MATLAB software. SGI was estimated for both observed and predicted 

groundwater level data to assess the groundwater drought scenario and to develop 

spatio-temporal groundwater drought map of the study area. Groundwater level and 

drought conditions were predicted for the year 2023 using the projected climate 

data obtained from CMIP6 climate model for two representative wells in the area. 

 The results of variability analysis showed that, the highest mean monthly 

groundwater level of 139.1 m was found for the well 139 of Chittur block in the 

month of September and the lowest mean monthly groundwater level of 61.5 m was 

found for the well 129 of Palakkad block in the month of September. Highest mean 

annual groundwater level was 138.9 m in the year 2007 for the well 139 of Chittur 

block and lowest was 62.1 m in the year 2016 for the well 129 of Palakkad block. 

Results of trend analysis showed a decreasing pre-monsoon groundwater level trend 
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in three wells 129 (Palakkad block), 133 and 142 (Malampuzha block) and 

decreasing post-monsoon groundwater level trend in well 139 (Chittur block), while 

no trend in all other wells for both seasons. The annual groundwater level trend 

showed a decreasing trend in wells 129 (Palakkad Block), 139 (Chittur block) and 

142 (Malampuzha block).  

The water table contour map of the study area was generated for the study 

period in Arc GIS using IDW interpolation technique. The average elevation of the 

well locations was about 96.25 m above MSL. The ground level elevation varied 

from 67 m at well PKD S-4 of Kuzhalmannam block to 152 m at wells 139 and 

PKD S-7 of Chittur block. The water table contour maps were prepared for pre-

monsoon, post-monsoon and annual. The average seasonal groundwater level 

fluctuation varied from 1 to 2 m in some portions of Kuzhalmannam and Palakkad 

block, and 4 to 5 m in some portions of Chittur and Malampuzha blocks. Majority 

of the area showed 2 to 3 m groundwater level fluctuation.  

Groundwater level fluctuation being a non-linear phenomenon, the soft 

computing technique ANN was used for modelling the groundwater level. 

Modelling was done using MATLAB R2016a software. Precipitation, minimum 

temperature and maximum temperature were used as the input data whereas 

observed groundwater level was taken as the target data for the development of 

ANN model. The data were divided into two groups, viz, training dataset and testing 

dataset. The monthly data from 2007 to 2021 consist of 180 datasets, out of which 

70% was used for training and 30% was used for testing. Several ANN structures 

with feed forward back propagation algorithm, Levenberg-Marquardt learning 

algorithm and hyperbolic tangent as an activation function were tried and their 

performance in meeting the desired output were monitored. Feed forward ANN 

models were developed for all the 12 wells in the study area and the performance 

indicators correlation coefficient (r) ranged from 0.93 to 0.74, Root Mean Square 

(RMSE) ranged from 0.11 to 0.45 m, and Coefficient of determination (R2) ranged 

from 0.87 to 0.69 all of which were in the acceptable range. The best model 

performance for training was for the well PKD S-4 with model configuration 3-10-
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1 and r = 0.92 whereas, during testing it was found for the well 129 with model 

configuration 3-14-1 and r = 0.93. 

Groundwater drought conditions were assessed by SGI using observed 

groundwater level data and ANN predicted groundwater level data for all the wells. 

The SGI was estimated for pre-monsoon months Jan, Feb, Mar, Apr and May of the 

study period from 2007 to 2021 for all the twelve wells as drought was more severe 

during these months. The value of SGI indicates the drought severity, more the 

negative value more is the drought severity. SGI values ranged from -3.7 to 1.1 

indicated exceptional to no drought condition in the study area. The computed SGI 

values indicated that the years 2013, 2016, 2017 were the severe drought years of 

the study area.  

According to Spatial distribution of SGI for 2013, 2016 and 2017 April and 

May months, Chittur and Malampuzha block were the most drought affected areas 

followed by Kuzhalmannam and Palakkad block. Exceptional drought was seen in 

well PKD S-4 of Kuzhalmannam block, and moderate drought was seen in well 139 

of Chittur block in April 2013. During May 2013, exceptional drought was seen in 

well 160 PKD-12 of Kuzhalmannam block and moderate drought was seen in well 

133 of Palakkad block. Well 160 PKD-12 of Kuzhalmannam block showed 

exceptional drought and well 142 of Malampuzha block showed moderate drought 

in April 2016. Exceptional drought was seen in well 140 of Malampuzha block, and 

moderate drought was seen in well 160 PKD-8 of Palakkad block during May 2016. 

During April 2017, exceptional drought was seen in well PKD S-7 of Chittur block 

and in May 2017 Well PKD S-3 of Kuzhalmannam block showed exceptional 

drought, and well 133 of Malampuzha block showed moderate drought. SGI 

estimated by ANN predicted groundwater level data showed good agreement with 

the SGI calculated by the observed groundwater level data for the study area which 

convey the effectiveness of ANN modelling in this study. 

Future prediction of groundwater level and drought of the year 2023 were 

assessed for two representative wells in drought affected region viz, well 142 of 

Malampuzha block and well 160 PKD-12 of Kuzhalmannam block using the 
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developed ANN models. The results showed low groundwater level (bgl) of 0.5 m 

in well 160 PKD-12 and 2 m in well 142 in the months Jun and July. But high 

groundwater level (bgl) of 2 m in 160 PKD-12 and 14 m in well 142 in April and 

May months was seen due to recharge by rainfall. Forecasted drought for the same 

wells showed that severe drought was observed in well 142 and 160 PKD-12 in 

May and March months respectively. 

Hence, it is concluded from the study that: 

1. ANN predicted groundwater level was in close agreement with that of the 

observed groundwater level in this study. Hence the model developed could be 

safely and effectively applied in the study area. 

2. ANN was found as a simple soft computing technique for modelling 

groundwater level and can be considered as a viable alternative for physically 

based model. 

3. SGI estimated by ANN predicted groundwater level data showed good 

agreement with the SGI calculated by the observed groundwater level data for 

the study area. 

4. SGI were found proven communication tools to quantify the groundwater 

drought of the area. 

5. As per the estimated SGI, Chittur and Malampuzha blocks were more drought 

affected followed by Palakkad and Kuzhalmannam blocks. 

Suggestions and recommendations 

➢ Further abstraction of ground water should immediately be stopped in the 

blocks Chittur and Malampuzha block which are under over-exploited 

category.  

➢ Groundwater recharge structures are recommended to implement in droght 

affected area to recharge groundwater. 

➢ The input data like net groundwater recharge, net groundwater discharge, 

recharge due to rainfall, return flow of irrigation, canal seepage and seepage 

from tanks and ponds, draft from minor irrigation structure can also be 
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incorporated in ANN model if possible, to model the groundwater level and 

can check the efficiency of the model to predict groundwater level. 

➢ Further studies should be done in the study area with the application of other 

soft computing machine learning techniques and physically based 

groundwater flow models to check the credibility of ANN models. 
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APPENDIX-I  

Monthly depth to water table 
 Table A-1: Monthly depth to water table (m) of well 139  

Well 

139 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 13.56 13.03 13.46 13.12 13.30 12.71 21.10 16.65 16.58 16.54 20.67 18.86 16.00 15.81 18.71 

Feb 15.04 14.17 15.95 14.92 14.76 18.48 20.78 16.55 18.06 18.01 21.70 19.51 16.80 17.93 19.40 

Mar 16.09 15.39 16.37 17.28 16.48 19.30 20.37 10.13 18.20 19.30 21.38 20.33 18.55 18.48 21.34 

Apr 16.42 16.60 16.80 17.17 16.85 16.58 17.76 17.26 16.51 20.08 21.60 21.66 19.81 19.95 20.72 

May 17.44 16.71 17.29 15.05 17.42 17.94 17.03 17.81 14.66 20.23 24.99 21.19 9.71 20.70 19.54 

Jun 16.23 16.82 19.05 15.61 11.75 18.58 15.91 16.33 14.05 17.70 22.17 19.21 22.49 18.22 19.15 

Jul 9.27 14.70 9.97 13.05 10.71 17.76 10.07 13.36 13.27 16.67 19.46 14.81 19.34 17.51 16.76 

Aug 10.25 11.35 10.64 10.75 9.66 16.30 9.32 10.64 13.88 15.70 18.42 12.30 19.48 15.23 15.28 

Sept 9.69 10.92 9.10 10.60 8.92 17.88 10.93 10.48 14.36 16.98 15.91 13.79 14.95 14.24 14.70 

Oct 10.58 11.51 9.96 11.51 10.00 16.86 14.16 10.90 14.68 17.60 14.72 13.61 15.43 14.54 13.92 

Nov 11.23 10.57 9.36 10.97 10.60 18.53 15.45 11.32 14.33 17.58 18.80 14.60 14.35 16.17 15.60 

Dec 11.88 12.02 10.97 10.00 10.76 18.19 15.66 12.88 14.73 19.12 16.98 15.16 15.58 18.68 15.36 

 

Table A- 2: Monthly depth to water table (m) of well PKD S-7 

Well PKD 

S-7 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 1.74 1.69 2.22 1.54 1.61 1.53 3.44 3.08 2.25 2.41 4.31 3.90 2.24 0.95 0.89 

Feb 2.46 2.17 2.94 2.10 2.08 2.00 3.75 3.60 2.68 3.02 4.83 4.07 3.58 1.69 1.25 

Mar 2.85 2.63 3.41 2.64 2.67 2.54 4.49 3.89 1.55 3.57 5.21 4.98 2.91 2.16 1.30 

Apr 3.78 3.08 3.87 3.16 3.27 2.94 4.90 4.20 0.55 4.46 5.68 4.72 3.56 2.48 1.02 

May 3.53 3.37 4.66 2.72 2.98 3.12 3.93 2.12 0.07 3.76 5.66 4.42 3.30 2.72 0.98 

Jun 3.09 3.66 5.02 3.88 0.58 3.74 0.00 0.57 0.27 2.11 5.27 0.87 3.85 2.76 1.25 

Jul 0.17 3.24 1.10 1.85 0.52 1.92 0.76 0.40 0.49 1.67 4.12 0.03 1.16 1.78 0.23 

Aug 0.45 0.73 1.03 0.94 0.45 1.79 0.52 0.45 0.67 2.00 1.15 0.11 1.40 0.07 0.12 

Sept 0.30 0.93 0.80 0.65 0.10 1.02 0.84 0.73 0.70 2.83 1.04 0.32 0.26 0.34 0.15 

Oct 0.40 0.84 0.62 0.77 0.56 0.63 1.14 0.95 0.99 3.07 2.25 0.52 0.37 0.40 0.10 

Nov 0.80 0.76 0.17 0.62 0.16 1.87 1.97 1.16 1.21 3.79 2.60 0.96 0.20 0.56 0.11 

Dec 1.20 1.49 0.60 0.37 0.35 2.45 3.08 1.80 2.00 3.95 3.57 1.67 0.42 0.56 0.33 
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Table A- 3 Monthly depth to water table (m) of well 128 

Well 

128 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 3.81 4.5 3.77 3.63 3.75 3.67 4.73 3.97 4.05 3.22 4.39 4.24 4.11 3.74 3.66 

Feb 5.20 4.4 4 4.06 4.11 4.45 5.59 4.75 4.72 3.98 5.34 4.10 4.49 3.49 3.62 

Mar 5.65 4.31 4.53 4.38 3.97 4.58 5.25 5.23 5.25 5.09 5.89 5.49 5.06 4.95 4.77 

Apr 5.64 3.68 4.80 4.66 4.30 4.51 5.67 5.58 5.40 5.68 5.67 5.52 5.40 5.73 5.57 

May 5.14 3.94 4.49 4.38 5.23 4.83 5.64 5.59 4.81 5.33 6.14 5.41 5.70 5.55 4.55 

Jun 3.32 2.47 4.08 2.22 2.65 4.48 3.11 4.63 2.68 5.03 6.13 3.33 5.57 5.74 4.67 

Jul 2.70 3.09 1.78 2.39 2.64 4.03 1.70 2.95 2.59 2.79 3.33 2.50 3.84 3.20 2.78 

Aug 2.67 2.31 2.87 2.61 2.62 3.26 3.40 3.45 3.62 3.96 3.85 3.02 3.47 1.98 3.11 

Sept 2.73 3.42 3.17 2.81 2.25 3.55 2.47 3.57 3.49 4.20 2.70 2.74 2.05 2.59 3.03 

Oct 2.96 3.06 2.92 2.72 3.59 4.01 3.86 2.87 3.42 4.53 3.74 3.45 3.17 3.61 2.87 

Nov 3.50 3.48 2.09 2.83 3.48 4.43 3.82 3.95 2.43 4.37 3.75 4.29 3.05 4.07 3.20 

Dec 4.20 3.58 3.31 3.96 3.46 4.39 4.13 3.98 3.82 5.05 4.05 3.97 3.57 3.71 3.80 

 

Table A-4 : Monthly depth to water table (m) of well 129 

Well 

129 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 4.60 4.5 8.35 7.71 7.91 8.24 8.91 8.21 8.35 8.54 9.36 8.81 8.68 7.93 8.61 

Feb 8.25 8.38 9.00 8.14 8.39 8.67 9.00 8.49 8.80 9.00 9.59 8.88 8.98 8.54 9.03 

Mar 8.85 8.65 9.10 8.72 8.04 8.85 9.25 9.04 8.90 9.29 10.06 9.61 9.75 9.03 9.58 

Apr 9.06 8.04 9.59 9.06 8.68 9.32 9.63 9.17 9.19 9.70 9.80 9.79 9.99 9.42 9.97 

May 9.20 9.10 9.68 8.87 9.00 9.36 9.24 9.25 9.30 9.90 10.11 9.84 10.29 9.92 9.98 

Jun 7.77 8.50 9.50 8.33 8.00 9.25 9.06 9.14 8.28 9.65 10.22 8.68 10.28 10.10 9.98 

Jul 3.40 7.50 4.00 6.96 6.21 7.74 4.74 8.17 7.20 8.35 8.73 6.27 9.27 8.83 9.19 

Aug 4.54 6.61 6.45 5.77 5.38 7.35 6.27 6.96 7.27 7.80 8.25 5.55 8.05 7.84 7.64 

Sept 3.67 7.50 6.50 6.24 4.56 6.85 5.77 6.27 7.62 8.40 6.25 6.97 5.92 6.75 7.01 

Oct 5.97 7.44 6.26 6.71 6.85 7.72 7.06 6.32 7.24 8.48 7.20 7.25 6.84 6.72 6.63 

Nov 6.00 7.03 6.02 7.08 7.24 8.45 7.32 7.06 7.61 8.40 7.91 7.72 6.20 7.60 6.50 

Dec 7.37 7.60 7.49 7.66 7.39 8.47 7.81 8.00 8.00 9.06 7.83 8.16 7.23 8.21 7.20 
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Table A-5 : Monthly depth to water table (m) of well 160 PKD-8 

Well 160 

PKD-8 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 10.99 8 10.89 10.47 12.71 12.12 14.87 14.61 14.47 12.89 13.11 12.75 13.06 10.73 10.92 

Feb 13.08 7.96 11.95 12.96 8.33 13.84 15.27 15.32 14.82 13.77 14.69 13.29 13.96 12.35 12.11 

Mar 16.85 9 12 14.32 10.89 14.79 17.32 17.64 17.56 17.07 16.55 11.50 14.49 12.79 13.10 

Apr 16.17 11.60 12.52 14.11 8.62 11.12 16.99 8.99 8.65 16.52 16.05 11.16 15.08 14.57 11.32 

May 14.79 11.6 10.79 10.68 13.05 10.93 16.71 8.50 8.33 12.55 14.89 9.87 13.47 11.65 7.58 

Jun 10.22 11.60 9.76 7.32 7.37 9.01 7.19 7.00 7.73 10.77 12.17 8.21 14.37 10.82 7.85 

Jul 6.59 7.17 7.04 7.85 7.65 7.46 7.67 8.00 8.49 7.41 8.37 8.05 7.31 7.41 6.86 

Aug 6.82 6.98 7.49 7.21 7.30 4.97 8.75 9.58 7.12 9.45 9.05 6.99 5.56 7.09 7.03 

Sept 6.23 8.07 7.64 7.22 7.04 14.37 4.67 8.23 8.13 7.80 7.65 7.69 6.78 7.34 7.07 

Oct 6.45 7.91 7.17 7.07 9.03 8.88 8.27 12.23 8.21 8.39 9.39 5.18 8.92 7.31 6.99 

Nov 8.00 8.86 7.07 6.95 7.26 9.42 9.37 11.79 7.49 8.41 9.08 10.72 7.43 9.75 7.82 

Dec 10.46 10.00 10.85 9.23 7.29 12.19 13.84 13.02 9.00 11.38 8.77 10.15 10.28 7.80 9.78 

 

Table A-6: Monthly depth to water table (m) of well 160 PKD-12 

Well 160 

PKD-12 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 1.13 1.10 1.36 1.29 1.15 1.19 1.20 1.50 1.13 1.17 1.87 1.27 1.76 1.18 1.38 

Feb 1.66 1.22 1.70 1.19 1.13 1.19 1.62 1.36 2.56 1.82 1.97 1.40 2.34 1.52 1.75 

Mar 1.42 2.00 2.05 2.30 1.75 1.54 2.54 2.57 3.09 2.89 3.00 2.29 2.60 1.73 1.74 

Apr 2.38 2.21 2.48 2.55 2.15 2.02 3.89 2.43 1.32 3.15 2.57 1.70 3.02 2.93 2.21 

May 2.68 2.64 2.67 2.06 2.40 1.57 4.23 1.47 1.38 1.33 3.34 1.71 3.92 2.40 2.36 

Jun 2.36 1.33 2.03 1.08 1.01 1.13 1.33 1.18 1.01 1.55 3.80 1.45 4.33 2.30 2.13 

Jul 1.22 1.31 1.06 1.06 1.02 0.96 1.51 0.88 1.09 1.02 0.93 0.95 1.20 1.20 1.39 

Aug 1.10 1.25 1.05 1.02 1.09 1.05 1.68 1.65 1.30 1.17 1.40 1.16 1.73 1.08 1.59 

Sept 1.14 1.65 1.23 1.07 1.04 1.48 1.04 1.13 0.00 1.25 1.14 1.56 0.97 1.12 1.09 

Oct 1.02 1.50 1.30 1.05 1.53 1.08 1.51 1.52 1.17 1.57 1.25 1.13 1.48 1.86 0.92 

Nov 0.95 1.36 1.10 0.96 0.97 1.21 1.56 1.51 0.00 1.55 2.30 1.57 1.03 1.71 1.02 

Dec 1.23 1.20 1.34 1.21 1.14 1.20 1.30 1.50 1.00 1.77 1.34 1.54 1.71 2.59 1.88 
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Table A-7: Monthly depth to water table (m) of well PKD S-3 

Well PKD S-

3 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 1.47 1.5 1.39 1.74 1.23 1.44 2.17 1.92 2.08 1.72 4.52 1.56 2.16 1.52 1.73 

Feb 1.97 1.48 2.00 1.60 1.50 1.60 3.05 1.45 2.54 1.91 8.11 2.42 2.29 1.75 1.66 

Mar 2.98 3.8 2.32 3.70 2.33 2.62 3.98 3.47 3.97 4.39 5.64 8.25 3.20 2.64 2.49 

Apr 4.00 2.95 4.08 4.12 2.97 4.01 5.16 3.87 3.64 5.10 5.40 4.35 5.16 4.61 2.98 

May 3.80 4.62 4.62 3.08 3.35 2.80 6.03 2.83 3.49 4.34 6.52 4.18 5.70 3.47 1.94 

Jun 0.81 2.00 3.86 0.81 0.74 2.75 2.64 1.46 1.86 3.40 6.80 1.42 6.48 3.73 1.61 

Jul 0.85 1.01 0.70 0.84 0.83 1.51 0.88 0.72 1.32 1.04 1.08 0.63 1.70 0.85 0.69 

Aug 1.05 0.68 1.00 0.79 0.95 1.11 1.46 1.24 1.45 1.42 1.45 1.32 1.21 0.66 1.08 

Sept 1.02 1.65 1.33 0.97 0.90 1.16 0.86 1.32 1.73 2.06 1.12 2.37 0.91 1.11 1.13 

Oct 0.81 0.69 1.59 1.16 1.75 2.05 1.50 1.58 1.74 2.34 1.47 1.29 1.72 1.38 0.76 

Nov 1.00 1.14 0.87 0.68 0.89 1.12 1.56 1.98 1.70 2.24 1.83 2.35 1.12 1.61 1.36 

Dec 1.38 1.40 1.36 1.45 1.84 1.56 1.77 1.90 1.83 4.07 1.38 1.31 1.67 0.97 1.72 

 

Table A-8: Monthly depth to water table (m) of well PKD S-4 

Well 

PKD S-4 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 2.88 3 3.29 3.30 4.78 3.04 3.87 3.38 3.30 2.70 3.73 3.18 3.12 3.02 3.04 

Feb 3.52 3.20 4.00 3.70 3.75 3.14 4.79 3.75 3.64 3.51 4.37 3.56 3.37 2.69 3.28 

Mar 4.05 3 4.49 6.20 3.59 3.87 5.30 4.87 4.40 4.62 5.07 8.14 5.73 3.23 3.41 

Apr 5.22 2.98 4.49 6.12 3.71 4.43 6.42 4.62 3.09 4.95 5.18 3.54 4.17 3.60 3.38 

May 3.97 3.62 3.80 4.10 4.05 3.85 6.10 3.95 2.70 3.32 4.44 2.88 3.80 3.30 2.75 

Jun 2.26 2.53 3.13 2.19 1.89 3.47 2.75 3.18 1.94 2.84 4.34 2.75 3.69 2.78 2.68 

Jul 2.02 2.43 1.97 2.18 1.84 2.66 2.07 1.98 2.02 1.87 2.57 1.80 2.31 2.20 2.09 

Aug 2.27 1.90 2.43 1.96 2.00 2.32 2.60 2.45 2.42 2.50 2.69 2.48 2.49 2.08 2.43 

Sept 2.20 2.65 2.64 2.27 1.97 2.44 2.26 2.50 2.60 2.55 2.33 2.88 2.11 2.29 2.42 

Oct 2.21 2.12 2.63 2.38 2.54 3.05 2.70 2.20 2.66 2.66 2.65 2.40 2.73 2.68 2.34 

Nov 2.30 2.58 2.32 1.95 2.18 2.79 3.16 2.95 2.36 2.60 3.16 2.83 2.27 2.86 2.63 

Dec 2.59 2.81 2.76 2.87 2.59 3.11 3.07 3.00 2.70 3.51 3.10 3.40 3.38 3.05 2.47 
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Table A-9: Monthly depth to water table (m) of well 133 

Well PKD 

133 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 4.03 4 4.58 4.42 4.50 4.16 4.87 4.93 4.94 4.67 5.24 4.40 4.76 3.94 3.92 

Feb 4.73 4.45 4.81 4.86 4.77 4.48 5.00 5.25 5.17 5.14 4.96 4.85 5.33 4.72 4.45 

Mar 4.90 5 5 5.32 4.23 4.73 5.29 5.46 8.30 5.30 5.16 5.17 5.24 5.26 5.03 

Apr 5.18 5.13 5.23 5.23 4.80 5.20 5.22 5.28 6.06 5.39 5.20 5.30 5.13 5.23 4.67 

May 5.13 5.03 4.95 4.81 4.50 5.34 4.53 4.58 4.48 5.17 5.12 5.05 5.65 5.45 4.17 

Jun 2.75 4.63 4.96 4.82 0.24 4.64 0.10 4.72 1.22 5.14 5.25 4.23 5.30 5.36 3.72 

Jul 0.35 3.30 0.76 0.87 0.65 2.62 1.35 0.82 0.57 3.13 3.80 1.12 0.14 3.32 0.39 

Aug 0.35 0.47 2.68 0.68 0.20 0.73 0.28 0.82 2.77 1.31 2.23 1.06 0.87 0.09 0.50 

Sept 0.17 1.74 1.10 0.94 2.33 2.01 5.57 1.75 3.70 2.23 1.53 3.27 0.19 0.99 0.23 

Oct 0.69 3.24 0.33 1.03 0.69 2.57 3.06 2.27 3.44 3.79 1.83 1.97 0.92 1.69 0.20 

Nov 1.00 2.48 0.43 1.23 3.12 3.82 9.60 4.23 3.73 3.80 3.17 3.55 0.70 2.05 1.13 

Dec 1.13 3.80 3.41 1.73 3.50 4.66 8.00 4.50 4.00 4.59 3.57 4.01 2.55 2.50 2.27 

 

Table A-10: Monthly depth to water table (m) of well 140 

Well PKD 

140 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 3.82 4 3.91 3.82 3.92 4.03 4.54 4.12 4.23 4.27 4.33 4.17 4.08 4.01 4.00 

Feb 4.52 4.12 4.00 4.27 3.80 4.33 4.94 4.72 3.78 4.88 5.06 4.40 4.25 4.22 4.25 

Mar 5.04 4.3 4.5 5.16 4.52 5.02 5.70 5.52 5.76 5.90 5.76 5.41 5.05 5.01 5.24 

Apr 6.44 5.01 5.01 5.09 4.27 5.24 6.11 5.71 5.70 6.21 5.69 5.52 5.58 5.60 5.58 

May 5.38 5.24 5.25 5.09 5.05 5.34 5.62 5.69 3.28 5.70 5.95 4.86 6.26 5.05 5.28 

Jun 3.67 4.83 4.70 4.19 2.96 4.27 3.68 5.62 4.24 4.62 6.07 3.26 6.28 4.99 5.72 

Jul 2.34 3.90 4.48 3.84 2.60 4.45 2.78 3.15 3.94 3.51 4.47 3.19 4.54 3.90 3.76 

Aug 2.90 3.35 2.70 3.45 2.70 3.72 3.35 3.26 3.43 3.72 4.23 1.77 4.27 2.40 3.57 

Sept 2.19 3.38 2.87 2.81 3.27 3.24 2.94 3.36 3.48 4.24 3.59 3.63 2.40 3.32 2.92 

Oct 2.65 3.76 2.83 3.20 3.19 3.56 3.13 3.71 3.79 4.60 3.77 3.55 3.39 3.28 2.97 

Nov 3.00 3.34 3.14 2.88 3.69 4.02 3.70 3.85 8.57 4.40 4.01 4.05 3.12 3.69 2.85 

Dec 3.51 3.65 4.30 3.49 3.80 4.09 3.91 4.00 3.92 4.41 4.05 3.98 3.54 3.82 2.80 
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Table A-11: Monthly depth to water table (m) of well 142 

Well PKD 

142 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 7.56 8 8.01 7.30 9.73 8.33 10.74 9.33 12.05 13.44 17.73 16.22 17.80 17.68 8.99 

Feb 8.00 7.27 9.21 7.80 9.93 9.69 10.89 11.09 15.00 10.93 17.75 15.09 18.14 18.07 12.45 

Mar 8.37 7.5 9.23 13.29 9.22 11.37 11.00 11.68 13.06 11.00 17.76 16.34 18.30 17.88 14.37 

Apr 8.22 7.81 9.59 13.87 8.60 10.23 13.18 10.51 9.98 12.51 17.76 16.59 18.08 16.05 12.76 

May 8.70 10.27 9.58 11.73 9.56 10.45 12.42 14.44 13.48 13.25 16.33 14.55 17.69 17.26 10.67 

Jun 6.42 9.15 6.05 13.16 6.24 10.37 10.57 11.49 8.29 11.77 16.00 11.23 17.94 13.47 10.77 

Jul 4.28 8.11 7.26 7.63 6.09 7.83 5.73 10.71 7.11 9.47 11.09 7.78 11.66 13.91 7.38 

Aug 4.38 5.79 6.38 6.91 6.00 6.32 6.36 6.63 7.54 9.44 12.13 6.39 9.64 6.49 7.64 

Sept 4.03 6.83 5.19 7.31 5.18 7.46 5.84 7.53 8.00 9.41 8.52 6.84 7.15 6.66 6.20 

Oct 5.01 7.66 6.01 6.50 6.71 7.47 8.20 7.00 9.00 13.32 9.50 8.78 7.88 7.29 5.80 

Nov 5.50 6.96 7.10 6.40 6.16 8.94 7.59 6.93 9.50 13.47 8.88 8.68 7.30 7.37 7.46 

Dec 6.42 8.00 7.50 6.74 7.09 9.97 9.05 9.59 10.00 17.68 9.42 11.60 10.19 7.11 9.74 
 

Table A-12: Monthly depth to water table (m) of well PKD S-15 

Well PKD 

S-15 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 4.20 5 5.81 6.70 7.00 7.50 7.95 7.61 6.92 7.48 6.84 6.84 7.58 6.95 5.49 

Feb 5.65 4 6.71 7.64 5.13 8.05 7.46 8.12 7.00 7.74 7.85 7.30 7.41 7.83 5.66 

Mar 5.80 3.4 7.01 8.44 6.18 7.46 7.37 8.66 8.37 8.55 8.25 8.26 7.97 5.21 5.67 

Apr 8.26 2.32 7.30 8.98 5.96 7.19 8.45 4.38 6.69 7.50 7.47 8.43 8.96 6.17 3.90 

May 7.40 7.09 7.10 6.91 6.31 7.35 7.30 7.72 6.44 6.56 9.12 4.83 8.66 6.00 3.61 

Jun 5.35 6.04 3.06 5.25 4.24 5.30 2.50 8.42 4.66 6.80 8.80 3.98 8.82 5.78 3.54 

Jul 4.05 6.30 4.18 4.81 4.06 6.40 3.18 6.79 3.75 6.26 7.07 4.19 6.00 4.37 3.14 

Aug 3.80 3.95 4.53 4.76 3.43 5.87 4.87 5.42 4.12 4.91 6.06 2.93 5.56 2.48 3.81 

Sept 3.10 5.37 4.69 4.05 5.18 5.27 5.42 4.28 4.25 5.98 5.39 5.85 2.42 4.07 2.81 

Oct 3.35 5.12 3.42 3.75 4.88 5.22 5.89 5.65 5.74 6.56 5.42 5.36 5.06 4.54 4.15 

Nov 5.00 4.75 6.24 5.56 6.53 6.73 7.04 6.85 5.20 6.98 5.94 6.75 4.26 5.49 3.46 

Dec 6.07 4.84 6.50 6.00 6.90 7.52 7.80 7.00 6.64 7.33 6.53 7.22 5.77 5.57 4.00 
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APPENDIX-II 

Observed and ANN predicted groundwater level of sample wells from each block 

Table A-13: Observed and ANN predicted groundwater level of sample wells 139 (Chittur block), well PKD S-3 (Kuzhalmannam block), well 129 

(Palakkad block) and well 133 (Malampuzha block) 

Well 139-

Observed 

GWL 

Well 139-ANN 

predicted GWL 

Well PKD S-3 

Observed 

GWL 

 

 

 

Well PKD S-3 

ANN 

predicted 

GWL 

 

 

Well 129 – 

Observed 

GWL 

 

 

 

Well 129- ANN 

predicted GWL 

 

 

 

 

Well 133- 

Observed GWL 

 

 

 

 

Well 133-

ANN 

predicted 

GWL 

 

 

 

 

138.44 140.04 72.53 72.71 66.40 65.57 108.97 108.82 

136.96 136.74 72.03 72.03 62.75 62.98 108.27 107.78 

135.91 134.34 71.02 70.12 62.15 62.06 108.10 108.06 

135.58 134.81 70.00 69.97 61.94 61.92 107.82 108.07 

134.56 133.66 70.20 71.10 61.80 61.81 107.87 108.78 

135.78 136.81 73.19 73.04 63.23 63.42 110.25 110.35 

142.73 142.65 73.15 73.07 67.60 67.53 112.65 112.78 

141.75 140.75 72.95 72.77 66.46 66.60 112.65 112.20 

142.31 142.86 72.98 72.98 67.33 67.57 112.83 112.63 

141.42 137.63 73.19 72.45 65.03 64.99 112.31 111.59 

140.77 139.45 72.91 72.41 64.33 63.63 112.09 110.46 

140.12 139.61 72.62 72.57 63.63 64.30 111.87 111.24 

138.98 139.33 72.57 72.36 63.13 63.54 110.21 110.28 

137.83 136.61 72.52 72.11 62.62 62.99 108.55 108.51 

136.62 138.52 70.23 72.24 62.79 62.86 108.21 108.64 

135.40 135.39 71.05 70.88 62.96 62.17 107.87 108.43 

135.29 134.75 69.38 71.25 61.90 62.11 107.97 108.66 
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135.18 136.82 72.00 72.95 62.50 63.77 108.37 108.83 

137.30 139.47 72.99 73.05 63.50 63.17 109.70 112.39 

140.65 141.25 73.32 73.00 64.39 63.47 112.53 112.48 

141.08 141.53 72.35 72.88 63.50 64.05 111.26 111.15 

140.49 141.18 73.31 72.70 63.56 64.60 109.76 109.06 

141.43 136.27 72.86 71.55 63.97 62.67 110.52 110.06 

139.99 139.06 72.74 72.63 63.40 64.04 109.47 109.51 

138.54 138.57 72.61 72.26 62.65 62.44 108.42 108.29 

136.06 136.54 71.68 71.65 62.28 62.92 108.19 108.34 

135.63 136.02 69.92 70.53 61.90 62.35 107.77 108.03 

135.20 135.09 69.38 70.63 61.41 61.98 108.05 108.42 

134.71 135.30 70.14 71.25 61.32 62.61 108.04 107.89 

132.95 138.41 73.30 72.60 61.50 64.23 112.24 111.54 

142.03 141.94 73.00 72.79 67.00 66.22 110.32 110.42 

141.36 138.88 72.67 72.69 64.55 64.07 111.90 111.94 

142.90 140.92 72.41 72.81 64.50 63.76 112.67 112.27 

142.04 139.07 73.13 72.17 64.74 64.08 112.57 110.58 

142.64 140.79 72.64 72.42 64.98 64.40 109.59 109.70 

141.03 136.59 72.26 71.37 63.51 62.51 108.58 109.76 

138.88 136.45 72.40 72.04 63.29 63.06 108.14 108.38 

137.08 137.14 70.30 70.33 62.86 62.54 107.68 107.64 

134.72 134.63 69.88 70.12 62.28 61.97 107.77 107.96 

134.83 135.16 70.92 70.33 61.94 61.77 108.19 108.04 

136.95 136.24 73.19 72.32 62.13 61.65 108.18 108.56 

136.39 135.02 73.16 73.05 62.67 61.94 112.13 111.51 

138.95 140.81 73.21 72.96 64.04 64.41 112.32 112.60 

141.25 142.54 73.03 72.94 65.23 65.10 112.06 112.31 

141.40 134.92 72.84 72.48 64.76 63.71 111.97 111.39 

140.49 140.04 73.32 72.64 64.29 64.24 111.77 112.45 
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141.03 140.74 72.55 72.59 63.92 64.89 111.27 110.75 

142.00 141.34 72.77 72.89 63.34 66.82 108.50 108.77 

138.70 137.79 72.50 72.39 63.09 63.06 108.23 107.89 

137.24 138.43 71.67 71.87 62.61 62.32 108.77 109.09 

135.52 135.42 71.03 70.10 62.96 62.41 108.20 107.74 

135.15 135.89 70.65 70.67 62.32 62.24 108.50 108.16 

134.58 134.12 73.26 71.32 62.00 62.11 112.76 108.52 

140.25 140.09 73.17 73.00 64.79 63.12 112.56 112.06 

141.30 134.42 73.05 72.94 65.21 65.26 112.35 111.89 

142.34 140.96 73.10 72.92 65.62 64.40 112.80 112.59 

143.08 141.86 72.25 72.75 66.44 64.78 110.67 110.47 

142.00 138.95 73.11 72.18 64.15 64.13 112.31 110.09 

141.40 141.35 72.16 72.72 63.76 63.74 109.88 110.53 

141.24 138.17 72.56 72.55 63.61 63.31 108.84 110.14 

139.29 138.79 72.40 72.42 62.76 63.00 108.52 108.64 

133.52 136.28 71.38 71.78 62.33 63.01 108.27 108.64 

132.70 133.74 69.99 70.17 62.15 62.03 107.80 108.16 

135.42 135.58 71.20 70.58 61.68 61.97 107.66 108.07 

134.06 135.19 71.25 72.61 61.64 61.94 108.36 109.13 

133.42 133.96 72.49 73.05 61.75 61.98 110.38 111.06 

134.24 133.73 72.89 73.07 63.26 63.50 112.27 110.97 

135.70 133.66 72.84 73.15 63.65 62.33 110.99 112.62 

134.12 137.28 71.95 72.62 64.15 63.92 110.43 112.09 

135.14 139.33 72.88 72.15 63.28 64.05 109.18 110.47 

133.47 137.32 72.44 72.21 62.55 62.89 108.34 108.90 

133.81 136.75 71.83 72.00 62.53 62.96 108.13 107.90 

130.90 132.71 70.95 70.68 62.09 62.25 108.00 107.10 

131.22 135.39 70.02 70.67 61.92 62.42 107.86 107.95 

131.63 131.93 68.84 69.85 61.75 61.79 107.71 107.95 
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134.24 133.48 67.97 69.12 61.37 61.55 107.78 107.88 

134.97 134.57 71.36 70.96 61.76 60.87 108.47 107.90 

136.09 135.57 73.12 72.96 61.94 62.31 112.90 112.82 

141.93 142.74 72.54 72.98 66.26 62.08 111.65 112.05 

142.68 140.80 73.14 72.95 64.73 63.83 112.72 111.43 

141.07 140.61 72.50 72.82 65.23 64.36 107.43 107.56 

137.84 137.99 72.44 72.79 63.94 64.08 109.94 109.91 

136.55 135.44 72.23 72.45 63.68 63.00 103.40 107.18 

136.34 137.02 72.08 72.11 63.19 63.54 108.07 109.38 

135.35 136.24 72.55 72.08 62.79 63.06 107.75 108.49 

135.45 132.79 70.53 70.24 62.51 62.10 107.54 107.34 

141.87 138.65 70.13 69.83 61.96 61.89 107.72 108.01 

134.74 135.14 71.17 69.48 61.83 61.69 108.42 107.86 

134.19 134.29 72.54 71.16 61.75 61.51 108.28 107.99 

135.67 137.22 73.28 72.85 61.86 62.18 112.18 111.98 

138.64 138.66 72.76 72.86 62.83 62.59 112.18 112.79 

141.36 142.56 72.68 72.91 64.04 65.18 111.25 111.35 

141.52 139.36 72.55 72.73 64.73 63.99 110.99 110.58 

141.10 140.01 72.42 72.51 64.68 63.69 110.73 111.59 

140.68 136.63 72.02 72.58 63.94 63.17 108.77 107.62 

139.12 136.43 71.92 72.07 63.00 63.20 108.06 108.41 

135.42 137.99 71.46 71.63 62.65 62.62 107.83 107.85 

133.94 132.35 70.03 70.28 62.20 62.12 104.70 106.72 

133.80 134.35 70.36 70.34 62.10 61.99 106.94 108.24 

135.49 134.68 70.51 70.61 61.81 61.87 108.52 107.92 

137.34 137.64 72.14 72.19 61.70 61.45 111.78 109.46 

137.95 138.08 72.68 72.82 62.72 62.76 112.43 112.61 

138.73 137.10 72.55 72.76 63.80 63.62 111.33 111.65 

138.12 138.58 72.27 72.59 63.73 63.58 110.23 110.82 
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137.64 135.58 72.26 71.43 63.38 62.97 109.30 107.90 

137.32 136.31 72.30 71.81 63.76 63.55 109.56 109.95 

137.67 138.73 72.17 72.36 63.39 63.95 109.27 110.68 

137.27 137.27 72.28 73.08 63.00 62.86 108.33 106.82 

135.46 134.40 72.09 71.23 62.46 62.52 107.86 108.22 

133.99 134.25 69.61 70.10 62.00 61.78 107.70 108.27 

132.70 132.39 68.90 68.86 61.71 61.63 107.61 107.87 

131.92 131.55 69.66 69.40 61.30 60.93 107.83 108.08 

131.77 130.36 70.60 69.39 61.10 61.23 107.86 107.91 

134.30 134.23 72.96 72.99 61.35 62.02 109.87 110.05 

135.33 135.47 72.58 72.95 62.65 63.61 111.69 112.58 

136.30 137.38 71.94 72.74 63.20 63.70 110.77 111.73 

135.02 134.69 71.66 72.28 62.60 63.64 109.21 110.82 

134.40 134.52 71.76 71.27 62.52 62.76 109.20 107.70 

134.42 135.19 69.93 70.99 62.60 62.59 108.41 108.48 

132.88 133.19 69.48 71.04 61.94 62.56 107.76 109.84 

131.33 132.41 65.89 70.51 61.64 62.14 108.04 106.37 

130.30 133.15 68.36 70.07 61.41 62.14 107.84 107.83 

130.62 133.09 68.60 69.99 60.94 61.90 107.80 107.91 

130.40 131.95 67.48 68.73 61.20 61.36 107.88 107.87 

127.01 127.12 67.20 70.18 60.89 61.44 107.75 107.94 

129.83 128.86 72.92 73.08 60.78 61.30 109.20 109.49 

132.54 134.87 72.55 71.77 62.27 62.03 110.77 112.08 

133.58 134.69 72.88 72.90 62.75 63.20 111.47 112.20 

136.09 135.91 72.53 73.01 64.75 64.74 111.17 111.77 

137.28 136.81 72.17 72.60 63.80 63.34 109.83 110.64 

133.20 136.26 72.62 71.83 63.09 63.44 109.43 109.79 

135.02 134.60 72.44 71.93 63.17 63.22 108.60 108.69 

133.14 133.09 71.58 72.39 62.19 62.20 108.15 108.42 
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132.49 133.50 65.75 69.11 62.12 60.71 107.83 108.70 

131.67 132.87 69.65 67.43 61.39 61.45 107.70 107.58 

130.34 132.41 69.82 70.54 61.21 61.20 107.95 107.77 

130.81 131.57 72.58 70.23 61.16 61.17 108.77 112.28 

132.79 134.29 73.37 72.43 62.32 61.46 111.88 112.29 

137.19 137.29 73.05 73.35 64.73 65.45 112.76 112.83 

139.70 139.17 72.68 73.37 65.45 65.35 111.94 112.20 

138.21 136.25 71.63 73.37 64.03 63.97 109.73 109.65 

138.39 135.98 72.71 71.66 63.75 64.22 111.03 110.96 

137.40 137.06 71.65 71.94 63.28 63.60 109.45 108.87 

136.84 135.95 72.69 72.21 62.84 63.16 108.99 110.19 

136.00 136.26 71.84 72.17 62.32 60.71 108.24 108.08 

135.20 133.76 71.71 71.29 62.02 62.04 107.67 107.61 

133.45 131.78 70.80 71.33 61.25 61.26 107.76 107.44 

132.19 130.98 68.84 70.61 61.01 61.01 107.87 107.69 

142.29 138.59 68.30 68.93 60.71 60.71 107.35 107.91 

129.51 130.48 67.52 68.55 60.72 60.80 107.70 108.47 

132.66 134.03 72.30 68.62 61.73 62.53 112.86 112.15 

132.52 135.82 72.79 73.33 62.95 63.01 112.13 112.18 

137.05 137.04 73.09 73.37 65.08 64.82 112.81 112.66 

136.57 136.25 72.28 73.37 64.16 64.63 112.08 112.57 

137.65 135.44 72.88 73.30 64.80 65.07 112.30 111.79 

136.42 136.46 72.33 71.54 63.77 63.82 110.45 111.01 

136.19 134.60 72.48 72.43 63.07 63.02 109.06 108.13 

134.07 134.66 72.25 72.10 62.46 62.32 108.28 107.68 

133.52 131.44 71.36 71.66 61.97 61.94 107.74 107.84 

132.05 131.70 69.39 71.21 61.58 61.89 107.77 107.74 

131.30 137.39 70.53 69.47 61.08 60.71 107.55 107.96 

133.78 137.14 70.27 70.47 60.90 61.09 107.64 109.83 
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134.49 135.81 73.15 72.07 62.17 62.47 109.68 111.81 

136.77 135.71 73.34 73.37 63.16 63.20 112.91 112.80 

137.76 134.94 72.89 73.37 64.25 63.16 112.01 111.99 

137.46 135.57 72.62 73.37 64.28 63.32 111.31 110.89 

135.83 137.02 72.39 72.30 63.40 63.14 110.91 111.39 

133.32 132.91 73.03 72.08 62.79 62.90 110.50 111.14 

133.29 133.55 72.27 72.95 62.39 62.20 109.08 109.67 

132.60 133.66 72.34 72.74 61.97 61.99 108.55 108.05 

130.66 131.94 71.51 70.50 61.42 61.26 107.97 107.76 

131.28 131.32 71.02 71.18 61.03 61.08 108.33 108.12 

132.46 131.15 72.06 72.51 61.02 60.71 108.83 108.54 

132.85 136.09 72.39 71.14 61.02 61.21 109.28 111.00 

135.24 136.61 73.31 72.14 61.81 63.21 112.61 112.25 

136.72 134.65 72.92 73.37 63.36 63.01 112.50 112.27 

137.30 135.54 72.87 72.97 63.99 63.68 112.77 112.14 

138.08 136.30 73.24 72.54 64.37 64.04 112.80 112.27 

136.40 135.93 72.64 73.30 64.50 65.36 111.87 112.12 

136.64 136.47 72.28 72.54 63.80 63.76 110.73 110.99 
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APPENDIX-III 

Monthly precipitation data (mm) for the study period 2007-2021 

Monthly 

precipitation 

data 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 1.60 0.00 0.20 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 41.80 

Feb 0.00 35.00 0.00 0.00 67.70 0.00 54.70 4.40 0.70 0.00 0.00 15.50 0.10 0.00 0.00 

Mar 0.00 97.70 46.60 11.60 7.00 0.00 23.50 0.00 18.20 0.00 60.01 24.80 2.30 46.60 61.70 

Apr 8.90 61.50 53.50 88.50 60.30 114.90 0.10 35.40 125.30 4.00 14.60 31.70 76.20 44.40 67.20 

May 1.20 47.90 61.30 98.30 20.90 44.70 102.60 198.20 289.30 96.00 121.01 332.60 35.60 39.70 137.70 

Jun 5.50 315.50 208.70 315.00 530.60 339.20 724.60 247.30 462.40 448.40 453.12 476.50 196.50 202.70 287.70 

July 9.90 395.60 678.10 387.20 279.10 286.30 602.50 723.10 163.00 425.90 266.63 833.90 404.50 475.60 531.00 

Aug 4.70 212.30 204.00 46.30 405.40 398.40 384.00 558.80 189.90 167.70 362.71 1004.70 995.00 665.50 286.70 

Sept 4.20 171.10 184.30 121.50 246.40 165.80 337.70 273.80 74.00 92.60 327.00 70.40 584.30 459.20 312.00 

Oct 2.80 357.50 173.30 192.80 177.40 177.70 382.00 220.80 104.00 56.80 136.62 219.10 366.30 120.50 442.00 

Nov 0.30 41.70 230.00 244.30 221.90 48.20 45.90 5.10 176.40 69.00 37.31 19.70 173.30 66.30 230.00 

Dec 0.40 8.10 14.70 12.70 17.70 0.00 3.70 12.40 8.80 35.80 46.30 0.30 5.20 29.80 16.30 
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APPENDIX-IV 

Monthly max temperature for the study period 2007-2021 

Monthly 

max temp 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 32.03 32.75 33.72 33.72 33.12 32.95 33.24 31.78 32.07 32.58 33.67 32.61 32.11 32.60 30.60 

Feb 34.54 33.94 35.78 35.78 34.34 35.41 34.47 34.52 34.16 35.73 35.16 34.36 35.31 34.20 33.40 

Mar 36.45 33.86 37.10 37.10 35.56 35.60 36.78 36.71 35.21 38.41 36.98 36.46 38.14 37.10 36.50 

Apr 36.39 34.14 35.65 35.65 34.55 35.28 37.77 37.81 36.27 39.89 37.87 37.13 38.82 37.70 36.10 

May 34.00 33.91 33.95 33.95 33.66 33.56 36.47 35.16 34.00 36.44 35.95 33.62 36.97 37.00 34.30 

Jun 30.29 30.30 30.79 30.79 29.84 30.61 28.24 31.83 31.79 30.50 30.37 29.63 32.99 31.50 31.50 

July 28.29 29.59 29.55 29.55 29.43 29.95 27.60 29.11 30.72 29.58 30.38 28.61 29.96 30.50 30.70 

Aug 29.58 30.18 29.41 29.41 29.64 29.25 30.01 29.63 31.53 30.69 30.14 28.58 28.95 30.20 29.90 

Sept 28.45 29.50 30.66 30.66 30.17 30.59 30.67 31.43 33.06 30.97 31.63 33.23 30.77 30.10 30.50 

Oct 30.45 31.75 30.47 30.47 32.14 32.40 31.67 32.10 32.42 33.08 32.87 32.77 32.60 31.60 31.30 

Nov 32.10 32.51 30.70 30.70 31.52 32.01 32.50 31.72 31.79 33.56 33.02 32.37 31.98 32.10 30.60 

Dec 32.10 32.33 30.99 30.99 32.44 33.19 31.11 31.47 32.17 32.81 31.70 32.33 30.68 30.30 29.10 
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APPENDIX-V 

Monthly minimum temperature for the study period 2007-2021 

Monthly 

min 

temperature 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Jan 20.21 19.63 19.92 21.42 20.78 20.01 23.48 23.90 22.94 23.65 23.61 22.86 22.14 24.10 24.10 

Feb 20.82 21.63 20.80 22.86 19.81 21.14 23.75 23.65 23.56 24.76 23.60 23.46 24.68 24.60 23.70 

Mar 23.84 22.09 23.71 24.21 23.20 23.89 25.45 24.90 24.19 26.28 24.89 24.65 25.09 25.90 24.80 

Apr 24.65 24.79 24.82 25.29 24.28 25.01 26.31 25.86 24.83 27.51 26.52 25.97 26.39 26.10 25.60 

May 24.72 24.97 24.53 25.66 24.75 25.48 26.60 25.26 25.07 26.04 25.61 24.48 26.49 26.70 25.70 

Jun 24.12 23.77 23.65 24.24 23.77 24.13 23.26 24.65 24.32 23.97 24.16 24.05 25.43 24.30 24.30 

July 23.42 23.69 22.89 23.51 23.35 23.87 23.04 23.26 23.99 23.51 23.67 23.24 23.81 23.90 24.00 

Aug 23.42 23.94 23.72 23.65 23.46 23.78 23.65 23.44 24.24 23.93 23.99 23.24 23.53 24.00 23.70 

Sept 22.85 23.30 23.80 23.63 23.33 23.66 23.58 23.84 24.39 23.66 24.17 24.18 23.74 23.90 24.10 

Oct 23.23 23.37 23.81 23.45 23.58 23.65 23.68 24.28 24.22 24.11 24.36 24.20 23.96 23.90 24.20 

Nov 21.59 22.79 23.39 23.15 21.98 22.30 24.83 24.32 24.05 23.80 24.54 25.15 24.93 24.80 23.90 

Dec 21.11 20.50 22.75 21.09 21.03 21.70 23.32 23.73 25.06 23.15 24.05 24.52 24.90 23.90 22.80 
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APPENDIX-VI 

SGI estimated by ANN predicted groundwater level for all wells 

b)PKD 

-S3 

Jan Feb Mar Apr May 

2007 0.7 0.2 -1.4 -1.5 -0.6 

2008 0.4 0.2 0.3 -0.8 -0.5 

2009 0.3 -0.2 -1.0 -1.0 -0.5 

2010 0.2 -1.2 -1.4 -1.2 0.4 

2011 0.4 0.0 -1.4 -0.9 -0.4 

2012 0.5 0.0 -1.3 -1.0 0.6 

2013 -0.9 -0.9 -1.6 -2.2 -0.7 

2014 0.2 -1.3 -1.6 -1.9 -0.5 

2015 -0.2 -1.3 -1.2 -1.0 0.3 

2016 -0.5 -1.4 -2.4 -2.0 -2.0 

2017 -1.1 -1.4 -1.5 -2.5 -1.3 

2018 0.4 -2.2 -3.5 -1.0 -1.3 

2019 0.3 -0.4 -0.4 -1.0 -2.3 

2020 0.5 0.2 -0.1 -0.5 -1.9 

2021 0.9 0.7 -1.1 -0.5 0.5 

  

d)128 Jan Feb Mar Apr May 

2007 0.0 -0.2 -1.1 -1.4 -0.6 

2008 -0.1 -0.5 -0.9 -0.6 -0.4 

2009 -0.1 -0.5 -1.2 -0.8 -0.5 

2010 -0.1 -0.6 -1.2 -1.2 -0.3 

2011 0.1 -0.1 -0.9 -1.0 -0.5 

2012 0.0 -0.4 -1.2 -0.9 -0.1 

2013 -1.0 -1.2 -1.7 -2.1 0.4 

2014 -0.2 -1.2 -1.4 -2.1 -0.6 

2015 -0.6 -1.1 -1.2 -1.1 1.2 

2016 -0.7 -1.2 -2.2 -1.0 -1.6 

2017 -1.1 -1.2 -1.5 -2.1 -1.4 

2018 0.3 -1.0 -1.3 -1.7 1.1 

2019 -0.3 -0.4 -1.4 -1.4 -1.7 

2020 0.4 0.3 -1.6 -1.7 -1.7 

a)160 

PKD-

12 

Jan Feb Mar Apr May 

     

2007 

0.6 0.4 -0.7 -1.5 -1.2 

2008 0.6 0.4 0.3 -1.3 -1.3 

2009 0.6 0.0 -0.1 -1.4 -0.5 

2010 0.6 -0.1 -1.4 -1.4 -0.5 

2011 0.6 0.4 -0.1 -0.3 -1.1 

2012 0.6 0.0 -0.9 -0.7 -0.1 

2013 0.5 0.0 -1.6 -2.6 -4.0 

2014 0.0 -0.1 -1.6 -1.6 0.5 

2015 0.6 0.1 -1.2 -0.2 0.3 

2016 0.5 -1.5 -2.8 -2.3 -1.0 

2017 0.3 -0.2 -1.5 -2.2 -1.2 

2018 1.0 0.2 -0.5 -0.5 -0.2 

2019 -0.3 -0.5 -1.5 -2.2 -0.8 

2020 0.6 -0.6 -0.4 -2.0 -1.2 

2021 0.3 0.7 -0.4 -0.4 -1.2 

c)PKD 

S4 

Jan Feb Mar Apr May 

 2007 0.0 -0.7 -1.0 -1.7 -0.8 

2008 0.5 -0.1 0.6 -0.5 -0.6 

2009 0.0 -0.8 -1.9 -0.8 0.1 

2010 -0.4 -0.2 -3.4 -2.0 -0.9 

2011 -0.8 0.9 -0.8 -0.2 -0.5 

2012 -0.1 -0.4 -0.6 -1.2 -0.9 

2013 -0.8 -1.1 -3.0 -3.2 -3.1 

2014 -0.5 -1.4 -2.1 -1.4 -0.8 

2015 0.0 -1.2 -0.7 0.5 1.3 

2016 -0.6 -1.4 -1.6 -1.3 -1.6 

2017 -1.1 -1.3 -3.4 -1.5 -1.2 

2018 0.0 -0.9 -2.6 -0.5 0.0 

2019 -0.1 0.0 -0.2 -2.7 -1.2 

2020 0.0 -0.2 -0.2 0.1 -0.6 

2021 0.0 0.0 -0.7 -0.2 0.7 
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h)142 Jan Feb Mar Apr May 

2007 0.7 0.7 0.5 -0.4 -0.4 

2008 0.7 0.7 1.0 0.2 0.2 

2009 0.7 0.7 0.2 0.3 0.1 

2010 0.7 0.8 -0.4 -0.9 -0.6 

2011 0.7 0.7 0.0 0.0 -0.1 

2012 0.7 0.7 -0.7 -0.2 -0.3 

2013 -1.4 -0.8 -1.1 -1.2 -1.5 

2014 0.5 -1.4 -1.1 -0.6 -1.6 

2015 -0.5 -1.4 -0.4 0.1 -0.9 

2016 -1.0 -0.3 -0.8 -1.8 -1.6 

2017 -1.4 -1.2 -0.4 -1.4 -1.5 

2018 -2.1 -0.9 -2.1 -2.3 -0.8 

2019 -2.3 -2.3 -2.3 -2.4 -2.5 

2020 -1.1 -2.0 -2.1 -2.4 -2.5 

2021 0.2 -1.4 -1.5 -0.9 -0.2 

                                                                                   

j)PKD 

S 7 

Jan Feb Mar Apr May 

2007 0.5 1.0 -0.5 -1.0 -1.2 

2008 0.2 0.0 -0.3 -1.0 -0.9 

2009 -0.1 -0.4 -0.8 -1.1 -0.6 

2010 0.5 -0.2 -0.3 -1.4 -0.5 

2011 0.4 0.5 -0.7 -1.0 -0.9 

2012 0.1 -0.2 -0.9 -1.3 -0.7 

2013 -0.8 -0.8 -1.4 -1.9 -1.5 

2014 -0.2 -0.9 -1.0 -1.3 -0.4 

2015 -0.6 -0.8 -0.9 -0.5 1.4 

2016 -0.6 -1.2 -1.4 -1.9 -1.5 

2017 -0.9 -1.0 -1.1 -2.0 -1.5 

2018 -1.3 -1.5 -2.0 -1.8 -2.0 

2019 -0.1 -2.0 -2.0 -1.0 -0.9 

2020 0.8 0.2 -0.4 -0.3 -0.5 

2021 0.8 0.6 -2.0 0.7 0.3 

e)129 Jan Feb Mar Apr May 

 2007 2.0 0.0 -0.7 -0.8 -0.9 

2008 0.4 0.0 -0.1 -0.6 -0.6 

2009 -0.4 0.0 -0.5 -0.7 -0.3 

2010 0.1 -0.3 -0.7 -0.9 -1.0 

2011 0.1 -0.5 -0.4 -0.5 -0.6 

2012 0.0 0.0 -0.7 -0.7 -0.8 

2013 -0.5 -0.4 -0.9 -1.1 -1.6 

2014 0.1 -0.6 -0.8 -1.0 -1.1 

2015 -0.3 -0.6 -0.7 -0.8 -1.1 

2016 -0.3 -0.9 -1.0 -1.5 -1.3 

2017 -0.6 -0.6 -0.8 -1.2 -1.1 

2018 -0.6 -1.7 -1.1 -1.3 -1.3 

2019 -1.7 -0.7 -1.3 -1.5 -1.7 

2020 0.0 -0.5 -0.8 -0.8 -1.7 

2021 -0.6 -0.7 -1.3 -1.4 -1.7 

f)160 

PKD- 

8 

Jan Feb Mar Apr May 

  2007 -0.1 -0.6 -1.7 -2.0 -1.2 

2008 -0.8 0.2 1.1 -0.4 -0.3 

2009 -0.7 -0.7 -0.6 -0.9 0.2 

2010 -0.5 -1.2 -1.5 -1.2 0.2 

2011 -0.4 0.5 -1.3 -0.7 -0.6 

2012 -0.7 -0.8 -1.9 -0.3 -0.1 

2013 -1.4 -0.5 -2.0 -2.1 -1.8 

2014 -1.2 -1.7 -2.0 -2.1 0.8 

2015 -1.4 -1.6 -1.7 0.3 0.6 

2016 -1.3 -2.0 -2.1 -2.2 -1.7 

2017 -1.5 -1.8 -1.5 -2.1 -0.9 

2018 -0.6 -0.8 -1.0 -0.8 0.7 

2019 -0.7 -0.8 -1.1 -1.3 -0.7 

2020 -0.2 -0.4 -0.8 -1.0 -0.7 

2021 0.4 -0.6 -0.9 -0.2 0.1 

g)140 Jan Feb Mar Apr May 

2007 0.7 -0.5 -1.2 -1.4 -1.2 

2008 0.2 0.0 -0.3 -1.0 -1.1 

2009 0.4 -0.5 -0.9 -1.3 -0.3 

2010 0.1 0.1 -1.4 -1.6 -1.5 

2011 0.6 0.5 -0.4 -0.7 -0.9 

2012 0.5 0.2 -1.2 -1.5 -1.4 

2013 -0.1 -0.3 -1.6 -1.9 -1.9 

2014 0.0 -0.5 -1.5 -2.0 -1.4 

2015 0.1 -0.2 -1.2 -1.7 0.5 

2016 -0.2 -1.3 -2.0 -2.2 -1.9 

2017 -0.1 -0.8 -1.7 -2.0 -1.8 

2018 0.1 -0.4 -0.9 -1.6 -0.7 

2019 0.1 -0.4 -0.9 -1.3 -1.7 

2020 0.2 0.3 -1.5 -1.5 -1.8 

2021 0.1 0.1 -1.0 -1.7 -1.8 

i)133 Jan Feb Mar Apr May 

2007 -0.5 -1.1 -0.9 -0.9 -0.5 

2008 0.3 -0.7 -0.6 -0.7 -0.6 

2009 -0.8 -0.8 -1.0 -0.7 -1.0 

2010 -0.8 -1.2 -1.0 -0.9 -0.7 

2011 -1.0 -0.4 -1.1 -0.9 -0.7 

2012 -0.6 -0.6 -0.9 -0.9 -0.3 

2013 -1.5 -1.0 -1.0 -1.0 -1.0 

2014 -0.7 -1.3 -1.0 -1.0 -1.0 

2015 -1.0 -1.7 -0.8 -1.0 -0.2 

2016 -0.8 -0.8 -1.0 -0.9 -1.0 

2017 -1.9 -1.1 -1.0 -1.0 -1.0 

2018 -0.7 -0.6 -1.2 -1.1 1.4 

2019 -0.9 -1.2 -1.3 -1.1 -1.0 

2020 -0.9 -1.1 -1.1 -1.1 -1.0 

2021 -0.1 -0.9 -1.1 -0.9 -0.7 
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k)139 Jan Feb Mar Apr May  l)PKD 

S 7 Jan Feb Mar Apr May 

2007 1.3 0.2 -0.6 -0.5 -0.9  2007 0.5 1.0 -0.5 -1.0 -1.2 

2008 1.0 0.1 0.8 -0.3 -0.5  2008 0.2 0.0 -0.3 -1.0 -0.9 

2009 0.8 0.1 -0.1 -0.4 -0.3  2009 -0.1 -0.4 -0.8 -1.1 -0.6 

2010 0.1 0.3 -0.5 -0.4 0.0  2010 0.5 -0.2 -0.3 -1.4 -0.5 

2011 0.5 0.7 -0.3 -0.1 -0.7  2011 0.4 0.5 -0.7 -1.0 -0.9 

2012 0.9 0.0 -0.8 -0.2 -0.4  2012 0.1 -0.2 -0.9 -1.3 -0.7 

2013 -1.2 -0.3 -1.5 -0.9 -0.6  2013 -0.8 -0.8 -1.4 -1.9 -1.5 

2014 0.0 -1.2 0.8 -0.4 -0.7  2014 -0.2 -0.9 -1.0 -1.3 -0.4 

2015 0.6 -1.3 -0.6 -0.5 0.5  2015 -0.6 -0.8 -0.9 -0.5 1.4 

2016 -0.6 -0.7 -1.3 -1.6 -2.0  2016 -0.6 -1.2 -1.4 -1.9 -1.5 

2017 -1.3 -1.0 -1.1 -1.5 -3.1  2017 -0.9 -1.0 -1.1 -2.0 -1.5 

2018 -1.1 -0.9 -1.1 -1.3 -1.6  2018 -1.3 -1.5 -2.0 -1.8 -2.0 

2019 0.0 -0.8 -1.5 -1.8 0.8  2019 -0.1 -2.0 -2.0 -1.0 -0.9 

2020 -0.6 -0.5 -1.6 -1.5 0.4  2020 0.8 0.2 -0.4 -0.3 -0.5 

2021 -0.9 -0.9 -1.5 -1.7 -1.7  2021 0.8 0.6 -2.0 0.7 0.3 
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ABSTRACT 

Groundwater is one of the most precious and significant sources of water in 

the world. Understanding the effects of both natural and human-made factors on 

groundwater reserves and exploitation is crucial for developing appropriate 

management strategies to deal with unsustainable use. The understanding of 

groundwater level variability and trend is crucial for water resource planning in a 

region. The groundwater level fluctuation is a non-linear phenomenon. Hence, 

Artificial Neural Networks (ANN) proves to be one of the best tools for modelling 

non-linear relationship between input and output datasets. Once the groundwater 

level is modelled, it is easy to assess the groundwater drought conditions of a region 

using Standardized Groundwater level Index (SGI). Therefore, systematic 

information about likely occurrence and distribution of drought may assist in 

preparedness and mitigation of drought disasters. 

The present study was conducted in Kalpathypuzha sub-basin of 

Bharathapuzha to analyze the variability and trend of groundwater level, to develop 

ANN model for groundwater level prediction and to assess the groundwater drought 

using Standardised Groundwater level Index (SGI). Twelve observation wells 

evenly distributed in the blocks of Kuzhalmannam, Palakkad, Malampuzha and 

Chittur were selected. The groundwater level variability was analyzed by various 

descriptive statistics such as mean, standard deviation, coefficient of variation, 

skewness and kurtosis. The groundwater level trend was estimated using Mann- 

Kendall test and Sens slope estimator. ANN models were developed separately for 

each well to predict the groundwater level using MATLAB R2016a software. The 

input parameters used were precipitation, maximum and minimum temperature and 

output data used was groundwater level collected for a period of 15 years from 2007 

to 2021. SGI values were estimated for both observed and predicted groundwater 

level data to assess the groundwater drought scenario of the study area and to 

develop spatio-temporal groundwater drought map. Monthly groundwater level and 

drought conditions were predicted for the year 2023 using the developed ANN 

model. 



Results of trend analysis showed a decreasing pre-monsoon groundwater 

level trend in three wells, well 129 of Palakkad block and wells 133 and 142 of 

Malampuzha block while decreasing post-monsoon groundwater level trend in well 

139 of Chittur block. But there was no trend in all other wells for both pre-monsoon 

and post-monsoon. Feed forward ANN models were developed for all the twelve 

wells in the study area and the performance indicators correlation coefficient r (0.93 

to 0.74), Root Mean Square Error RMSE (0.11 to 0.45 m), and coefficient of 

determination R2 (0.87 to 0.69) were found in the acceptable range. The best model 

performance for training was for the well PKD S-4 with model configuration 3-10-

1 and r = 0.92 whereas, during testing it was found for the well 129 with model 

configuration 3-14-1 and r = 0.93. ANN predicted groundwater level was found in 

close agreement with that of the observed groundwater level in this study. Hence 

the model developed could be safely and effectively applied in the study area.  

The SGI was estimated for pre-monsoon months Jan, Feb, Mar, Apr and May 

of the study period from 2007 to 2021 for all the twelve wells as drought was more 

severe during these months. SGI values ranged from -3.7 to 1.1 indicated 

exceptional to no drought condition in the study area. The computed SGI values 

indicated that the years 2013, 2016, 2017 were the severe drought years of the study 

area. According to Spatial distribution of SGI values for the years 2013, 2016 and 

2017 Chittur and Malampuzha block were the most drought affected areas followed 

by Kuzhalmannam and Palakkad block. Hence the study revealed that the majority 

of Kapathypuzha sub-basin is drought prone and immediate measures are to be 

adopted to prevent the extend of severity in the area. 

 

 


