

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Technology) 2022 Admission I Semester Final Examination – March 2023

Beas.1102

Engineering Mathematics I (2+0)

Marks: 50 Time: 2 hours

- - 3. Degree of ODE $\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = x^2$ is
 - 4. Integrating factor of the differential equation $\frac{dy}{dx} + y \cos x = \frac{\sin 2x}{2}is$
 - 5. The Jacobian $J = \frac{\partial(x, y)}{\partial(u, v)} = \dots$
 - 6. If $rt s^2 < 0$ for certain point, then the point is known as
 - 7. Relationship between surface and volume integral is theorem.
 - 8. Del operator is also known as
 - 9. Let $x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. Then $\nabla e^r = \dots$

State True or False

- 10. $f(x, y) = x^3 + xy^2 + 901$ does not satisfies the Euler's theorem.
- II Write short notes on ANY FIVE of the following

(5x2=10)

- 1. Expand $log(1+sin^2x)$ in powers of x as far as the term in x^6 .
- 2. Evaluate Lt $\underset{x\to 0}{\text{Lt}} \frac{xe^x \log(1+x)}{x^2}$
- 3. Explain about Clairaut's equation.
- 4. State Bernoulli's equation.
- 5. Find the Complementary function for $(D^2 + \Delta 2) \psi = e^x$
- 6. Calculate $\int_{c} \vec{f} \, d\vec{r}$ where $\vec{f} = (y^2 + z^2)\vec{i} + (z^2 + x^2)\vec{j} + (x^2 + y^2)\vec{k}$ and c is the trangle line joining (0,0,0) to (1,1,1)
- 7. Define div grad F.

III Answer ANY FIVE of the following

(5x4=20)

- 1. Expand Sin²x Using Maclaurin's series.
- 2. Explain the working rule to find the maximum and minimum values of f(x,y).
- 3. Solve $\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$
- 4. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}$
- 5. State Greens theorem.
- 6. If $A = 5t^2i + tj t^3k$, B = sinti-costj. Find $\frac{d}{dt}(AxB)$
- 7. Prove that $A=3y^4z^2\bar{i}+4x^3z^2\bar{j}-3x^2y^2\bar{k}$ is a solenoidal vector

IV Write an essay on ANY ONE of the following

(1x10=10)

- 1.
- Find the maximum and minimum values of $f(x, y) = x^3 + y^3 3axy$. Verify Stokes' theorem for $\overline{F} = y^2 z \overline{i} + z^2 x \overline{j} + x^2 y \overline{k}$ where S is the open surface of a cube 2. formed by the $x = \pm a$, $y = \pm a$, $z = \pm a$ in which the plane Z=-a is cut.