## Fill in the blanks

1. The Taylor series expansion of the function $\cosh (x)$ centered at $x=0$ is
2. The necessary condition for the maclaurins expansion to be true for function $f(x)$ is $\qquad$
3. Degree of ODE $\frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}=x^{2}$ is $\qquad$
4. Integrating factor of the differential equation $\frac{d y}{d x}+y \cos x=\frac{\sin 2 x}{2}$ is $\qquad$
5. The Jacobian $\mathrm{J}=\frac{\partial(x, y)}{\partial(u, v)}=$ $\qquad$
6. If $\mathrm{rt}-\mathrm{s}^{2}<0$ for certain point, then the point is known as $\qquad$
7. Relationship between surface and volume integral is $\qquad$ theorem.
8. Del operator is also known as $\qquad$
9. Let $x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\hat{\mathrm{r}}|$. Then $\nabla e^{r}=$ $\qquad$
State True or False
10. $f(x, y)=x^{3}+x^{2}+901$ does not satisfies the Euler's theorem.

II Write short notes on ANY FIVE of the following

1. Expand $\log \left(1+\sin ^{2} x\right)$ in powers of $x$ as far as the term in $x^{6}$.
2. Evaluate $\underset{\mathrm{x} \rightarrow 0}{\mathrm{Lt}} \frac{\mathrm{xe}^{\mathrm{x}}-\log (1+\mathrm{x})}{\mathrm{x}^{2}}$
3. Explain about Clairaut's equation.
4. State Bernoulli's equation.
5. Find the Complementary function for $\left(D^{2}+\Delta-2\right) \psi=e^{x}$
6. Calculate $\int_{c} \vec{f} \overrightarrow{d r}$ where $\vec{f}=\left(y^{2}+z^{2}\right) \dot{i}+\left(z^{2}+x^{2}\right) \vec{j}+\left(x^{2}+y^{2}\right) \vec{k}$ and c is the trangle line joining $(0,0,0)$ to $(1,1,1)$
7. Define div grad $\mathbf{F}$.

## III Answer ANY FIVE of the following

1. Expand $\operatorname{Sin}^{2} \mathrm{x}$ Using Maclaurin's series.
2. Explain the working rule to find the maximum and minimum values of $\mathrm{f}(\mathrm{x}, \mathrm{y})$.
3. Solve $\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$
4. Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=e^{-2 x}$
5. State Greens theorem.
6. If $A=5 t^{2} i+t j-t^{3} k, B=$ sinti-costj. Find $\frac{d}{d t}(A x B)$
7. Prove that $A=3 y^{4} z^{2} \bar{i}+4 x^{3} z^{2} \bar{j}-3 x^{2} y^{2} \bar{k}$ is a solenoidal vector

## Write an essay on ANY ONE of the following

1. Find the maximum and minimum values of $f(x, y)=x^{3}+y^{3}-3 a x y$.
2. Verify Stokes' theorem for $\bar{F}=y^{2} z \bar{i}+z^{2} x \bar{j}+x^{2} y \bar{k}$ where $S$ is the open surface of a cube formed by the $\mathrm{x}= \pm \mathrm{a}, \mathrm{y}= \pm \mathrm{a}, \mathrm{z}= \pm \mathrm{a}$ in which the plane $\mathrm{Z}=-\mathrm{a}$ is cut.
