KERALA AGRICULTURAL UNIVERSITY
 B.Tech. (Agrl. Engg.) 2022 Admission
 I Semester Final Examination - March 2023

Sacs. 1101
Engineering Mathematics I (2+1)
Marks:50
Time: 2 hours

Fill in the blanks

(10x1=10)

1. Taylor's Series upto 3 terms is
2. One of the asymptote of $x^{3}+\overline{3 x^{2} y-4 y^{3}}-x+y+3=0$ is \qquad
3. The second partial derivative $f_{x x}$ of $x^{3} y^{2}+y^{5}$ is \qquad
4. General form of Bessel's equation is \qquad
5. $J_{0}(x)=$ \qquad
 \qquad .
6. $\nabla \cdot \vec{F}$ is called \qquad of F
7. In vector calculus the notation ∇ represents the expression \qquad
8. If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$, then $\nabla \cdot \vec{r}=$ \qquad .
9. If \vec{F} and \vec{G} are vector point functions, then $\nabla \cdot(\vec{F}+\vec{G})=$ \qquad
II Write short notes on ANY FIVE of the following
($5 \times 2=10$)
10. If $\vec{F}=3 x y \vec{\imath}-y^{2} \vec{j}$, evaluate $\int_{C} \vec{F} \cdot \vec{d} r$ where C is the arc of the parabola $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
11. If $x=r \cos \theta$ and $y=r \sin \theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$
12. Find the CF for $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$
13. If $u=x^{2}+y^{2}+z^{2}$, where $x=e^{t}, y=e^{t} \sin t$ and $z=e^{t} \cos t$, find $\frac{d u}{d t}$.
14. Find the function whose gradient is $\left(y^{3}+2 x y+3 x^{2}+2 x y^{2}\right) \vec{\imath}+\left(4 y^{3}+x^{2}+2 x^{2} y+3 x y^{2}\right) \vec{\jmath}$.
15. Let $f(x, y, z)=x^{2} y^{3} e^{z}$ Find the gradf.
16. Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at the point P in the direction of $P Q$, where P is $(1,-2,-1)$ and Q is $(3,-3,-2)$.

III Answer ANY FIVE of the following

(5x4=20)

1. If $u=x \log (x y)$, where $x^{3}+y^{3}+3 x y=1$, find $\frac{d u}{d t}$.
2. Find the stationary values of $x^{4}+y^{4}-2 x^{2}+4 x y=2 y^{2}$.
3. Solve the differential equation $\left(D^{2}+4\right) y=\sin 2 x$
4. Show that $\vec{F}=\left(y^{2}-2 x z^{2}\right) \vec{\imath}+(2 x y-z) \vec{\jmath}+\left(2 x^{2} z-y+2 z\right) \vec{k}$ is irrotational and hence find its scalar potential.
5. If $\vec{F}=\left(3 x^{2}+6 y\right) \vec{\imath}-14 y z \vec{\jmath}+20 x z^{2} \vec{k}$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ from $(0,0,0)$ to $(1,1,1)$ along the curve C given by $x=t, y=t^{2}, z=t^{3}$.
6. Solve: $\cos x \frac{d y}{d x}-y \sin x=y^{2} \cos ^{2} x$
7. If $u=\frac{y z}{x}, v=\frac{x z}{y}, w=\frac{x y}{z}$, then evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$..
8. Solve: $\frac{d^{3} y}{d x^{3}}-7 \frac{d y}{d x}-6 y=x^{2}+\sin x+e^{4 x}$
9. Verify Gauss's Divergence theorem for $\vec{F}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} \vec{k}$, where S is the surface of the cuboid formed by the planes $x=0, x=a, y=0, y=b, z=0$ and $z=c$.
