

KERALA AGRICULTURAL UNIVERSITY

B.Tech.(Agrl. Engg.) 2021 Admission III Semester Final Examination – February 2023

Sacs.2110

Engineering Mathematics III (2+1)

Marks: 50 Time: 2 hours

I State True or False

(10x1=10)

- 1. When the function is given in the form of table of values instead of giving analytical expression we use numerical differentiation.
- 2. Lagrange's interpolation formula is used only for equal intervals.
- 3. Bessel's method is given to central difference interpolation formula.
- 4. The order of convergence of Newton's-Raphson method is 2.
- 5. Runge-Kutta method of order four is single step method
- 6. Modified Euler's method is known as predictor-corrector method of finding the solution of first order differential equation.
- 7. The population or sample mean can be negative while the standard deviation may be positive or negative.
- 8. The sum of the squares of the deviations of a set of values is minimum when taken about mean.
- The square of a standard normal variate is known as a chi-square variate with n − 1 degree of freedom.
- 10. The assumption in analysis of variance is the same as Normal distribution.

II Write short notes on ANY FIVE of the following

(5x2=10)

- 1. When Newton's backward interpolation formula is used?
- 2. Obtain the divided difference table for the following data:

	x	-1	0	2	3
ĺ	у	-8	3	1	12

- 3. Write down the expressions of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = x_0$ by Newton's forward difference formula.
- 4. State Taylor series algorithm for the first order differential equation.
- 5. State any two properties of normal distribution.
- 6. What is type-I and type-II error in testing of hypothesis?
- 7. What are the applications of F —test?

III Answer ANY FIVE of the following.

(5x4=20)

1. Find the polynomial which takes the following table:

x	0	1	2
у	1	2	1

2. The following data are taken from the steam table:

Temp ⁰ C	140	150	160	1.70	180
Pressure kgf/cm ²	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature at t = 142.

- 3. Using Trapezoidal rule, evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ taking 8 intervals.
- 4. Find the mean and variance of the given data: 232, 254, 264, 274, 287, 298, 312, 342 and 398.

5. Two horses A and B were tested to run a particular track with the following results observed.

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	-

Test whether the two horses have the same running capacity.

- 6. Write down the ANOVA table for randomized block design.
- 7. Using Runge-Kutta method of 4th order solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ given that y(0) = 14tx = 0.2.

IV Write an essay on ANY ONE of the following

(1x10=10)

- 1. Solve $\frac{dy}{dx} = log_{10}(x+y)$, y(0) = 2 by Euler's modified method and find the values of y(0.2) and y(0.4) taking h = 0.2.
- 2. The following are the numbers of mistakes made in 5 successive days of 4 technicians working for a photographic laboratory:

7	Technician (I)	Technician (II)	Technician (III)	Technician (IX)
	(X_1)	(X_2)	(X_3)	(X_4)
	6	14	10	9
	14	9	12	12
İ	10	12	7	8
	8	10	15	10
	11	14	11	11

Test at the level of significance $\alpha = 0.01$ whether the differences among the 4 samples means can be attributed to chance.
