

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Agrl. Engg.) 2020 Admission IV Semester Final Examination - August 2022

Fape.2203

Heat and Mass Transfer (2+0)

Marks: 50 Time: 2 hours

1		Fill in the blanks (10x1=10)
	1.	Unit of thermal resistance is
	2.	The value of critical radius in the case of a cylindrical object is
	3.	The ratio of kinematic viscosity to thermal diffusivity known as
	4.	In free convection Nusselt number is a function of Grashof number and Prandtl number where as in forced convection, Nusselt number is a function of
	5.	Geometric configuration factor between two infinite parallel plate, separated by a distance
		The ratio of convective mass transfer to mass diffusion rate is called
	6.	State True or False
	7.	If Prandtl Number =1, The thickness of the thermal and hydro dynamic boundary layers will be equal.
	8.	Grey body is one whose absorptivity does vary with the variation temperature and
	9.	In a parallel flow heat exchanger the hot and cold fluid will flow through a coaxial tube in opposite direction.
		Define
	10.	Emissivity
THE REAL PROPERTY.		Write short notes on ANY FIVE of the following (5x2=10)
	1.	State Fourier's law of Heat conduction.
	2.	Summarize the applications of fins/extended surfaces.
	3	State Newton's law of cooling.

- 4. Explain the physical significance of Reynolds's number.
- State Stefan Boltzmann law of Radiation.
- 6. Define the term black body.
- State Fick's law of mass diffusion.

Answer ANY FIVE of the following III

(5x4=20)

- 1. Explain the significance of critical radius of insulation.
- The walls of a house, 4 m high, 5 m wide and 0.3 m thick are made from brick with thermal conductivity of 0.9 W/m.K. The temperature of air inside the house is 20°C and outside air is at -10°C. There is a heat transfer coefficient of 10 W/m².K on the inside wall and 30 W/m².K on the outside wall. Calculate total heat transfer rate through the
- With a neat sketch explain the hydrodynamic boundary layer over a flat plate.
- Define following dimensional numbers
 - Reynolds's number a)
 - Prandtl Number b)
 - Nusselt Number c)
 - Grashoff's Number d)

- 5. Calculate the following quantities for an industrial furnace (black body) emitting radiation at 2650°C.
 - (i) Total emissive power
 - (ii) Total emissive power of the furnace, if it is treated as gray and diffuse body with an emissivity of 0.9
- 6. A 5 cm diameter sphere at 600°C is placed near an infinite wall at 100°C. Both surface are black. Calculate the net radiant heat transfer between the two bodies.
- 7. Summarize Reynolds's Analogy.

IV Write an essay on ANY ONE of the following

(1x10=10)

- 1. Derive the three dimensional heat conduction in Cartesian coordinates.
- 2. Derive the equation for LMTD for a parallel flow heat exchanger.
