

KERALA AGRICULTURAL UNIVERSITY B.Tech. (Food Engg. & Tech.) 2018 Admission

V Semester Final Examination-February-2021

Meen. 3106

Systems Engineering (2+0)

Marks: 50 Time: 2 hours

 $(5x^2=10)$

[Choose the correct answer		(10x1=10)	
	1.			maximized or minimized is called	
		(a) constraints		objective function •	
		(c) basic requirements	' '		
	2. The column introduced in the matrix to balance the rim requirements				
		(a) Key column			
		(c) Slack column	(d)	Dummy Column	
	3.				
		size is equal to:			
		(a) $m \times n$	(b)	(m/n)-1	
		(c) $m + n + 1$	(d)	m+n-1	
	4.	7			
		(a) Outgoing variable		Incoming variable,	
		(c) Independent variable,	(d)	Dependent variable	
	5.				
		indicates:			
		(a) The solution is not optimal	' '		
		(c) Something wrong in the solution			
	. 6.	가게 보고 있었다면 된다. 이번 이번 이번 전에 이번 이번 보고 있다면 되었다면 하고 있다면 하는데 있다면 하는데 되었다면 하는데 되었다면 되었다면 되었다면 되었다면 하는데 되었다면 하는데 보고 있다.			
		(a) Value occurs at allowable set decision	(b)	highest value is chosen among allowable decision	
		(c) none of the above	(d)	all of the above	
	7.				
		(a) Put allocation in one of the empty cell as zero	(b)	Put a small element epsilon in any one of the empty cell	
		(c) Allocate the smallest element	(d)	Allocate the smallest	
		epsilon in such a cell, which will			
		not form a closed loop with			
		other loaded cells.			
	8.	A steady state exists in a queue if			
		(a) $\lambda > \mu$	(b)	$\lambda < \mu$	
		(c) $\lambda \leq \mu$	(d)	$\lambda \geq \mu$	
	9.				
		(a) LIFO	(c)	FIFO	
		(c) SIRO	(d)	Pre-emptive	
	10.	To convert \geq type of inequality into equality			
		(a) Add slack variable	(b)		
		(c) Subtract surplus variable	(d)	Add surplus variable	
		(-) 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	(-)	F	

Write Short notes on ANY FIVE of the following

· 1. State the difference between analytic procedure and iterative procedure.

- 2. List any four classifications of models in operation research.
- 3. List any four requirement of employing linear programming problem techniques.
- 4. When does degeneracy happen in transportation problem?
- 5. Unbalanced assignment problem.
- 6. Mathematical Model.
- 7. Briefly explain phases of Project management.

III Answer ANY FIVE of the following.

(5x4=20)

- 1. Role of Operation Research in Engineering.
- 2. Characteristics of linear programming problem.
- 3. Explain in brief network construction.
- 4. Maximize $f(\mathbf{x}) = x_1 + 2x_2$ subject to:

$$x_1 + 2x_2 \le 5$$

$$x_1 + x_2 \le 4$$

$$2x_1 + x_2 \le 6$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

- 5. A duplication machine maintained for office use is operated by office assistant. The time to complete each job varies according to an exponential distribution with mean 6 min. Assume a Poisson input with an average arrival rate of 5 jobs per hour. If an 8-hour day is used as a base, determine
 - a) The percentage of idle time of the machine.
 - b) The average time a job is in the system.
- 6. What is the probability that a customer has to wait more than 15 minutes to get his service completed in (M/M/I): (∞ / FIFO) queue system, if $\lambda = 6$ per hour and $\mu = 10$ per hour?
- 7. Define queuing models and also its applications.

IV Solve the following questions(ANY ONE)

(1x10=10)

1. Maximize $f(\mathbf{x}) = 2x_1 + 3x_2 + 2x_3$ subject to:

$$x_{1} + 2x_{2} + x_{3} \le 4$$

$$3x_{1} + x_{2} + x_{3} \le 5$$

$$x_{1} + x_{2} + 2x_{3} \le 4$$

$$x_{1} + x_{2} + x_{3} \le 3$$

$$x_{1} \ge 0$$

$$x_{2} \ge 0$$

$$x_{3} \ge 0$$

2. Compare and contrast the project evaluation and review technique (PERT) with the critical path method (CPM).