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CHAPTER I 

INTRODUCTION 

Land, water and vegetation are the three fundamental resources which support life    

on Earth.  Even though water is the most widely distributed natural resource, its       

demand is increasingly challenging every day.  Of all the water available on Earth,     

97% exists as salt water, leaving just 3% as fresh water, of which only 1% is           

readily available for use.  Freshwater resources are facing increased competition and      

its availability is limited in many parts of the world.  There is competition within 

countries for available water, in and between economic sectors and there are more 

chances of struggle regarding this natural resource since the demand for various uses 

such as agriculture, industries, households etc. is increasing drastically.  Currently, 47% 

of the world’s population lives in areas suffering from water shortages at least for a 

period of one month in a year.  The demand for water will increase by 2050 when world’s 

population is expected to reach to the range 9.4 to 10.2 billion, an increase of 22 to 34% 

from the current population of 7.7 billion people (WWDR, 2018).  This population 

growth is expected mainly in developing countries, first in Africa, and then in Asia, 

where water scarcity is already a serious problem.  Significant factors influencing the 

rising global demand for water include demographic pressure, ongoing developments, 

urbanization, environmental changes, changing patterns of consumption etc.  Most of the 

countries in the world are facing lack of water availability when compared to their 

growing demand.  From the ever increasing population and security needs, it is clear that 

both land and water resources must be managed and used in an integrated and 

comprehensive manner.  Sustainable development and efficient management are 

therefore of paramount importance, which is a complex as well as a challenging task. 

In water-scarce areas, water management is a serious issue since it has a direct 

impact on people’s livelihood and on land productivity.  Watershed management involves 

land management by using the most suitable measures, whether engineering or 

biological, in such a way that the management work must be productive and socially 

acceptable.  Understanding watershed hydrology is very important for effective water 
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resource management.  Effective conservation as well as management of natural 

resources can be accomplished by adopting watershed as a basic unit of development.  

Watershed as a natural hydrological unit, responds very effectively to various 

conservation practices.  In the past, the inhabitants of the dry lands have made use of 

water storage structures to overcome water scarcity.  These structures have both positive 

as well as negative impacts on watershed hydrology.  Positive impacts include enhancing 

water quality, ensuring proper water conservation, providing more sustainable water 

resources in the upstream reaches etc., and some negative impacts like erosion, water 

pollution, loss of homes and human lives due to flooding etc. may also occur.  One of the 

main concerns relevant to watershed management is the inequitable benefits for 

downstream users.  

The rate of degradation of soil and water resources is escalating throughout the 

world, influencing, directly or indirectly, all critical processes on the Earth's surface.  It is 

largely due to improper land use planning, where land and water management must be 

the most important factor.  Conservation practices are categorised as in-situ and ex-situ. 

In-situ management includes practices in agricultural fields like implementation of bunds, 

terraces and other soil and water conservation practices, whereas ex-situ management 

includes the construction of structures such as check dams, gully control structures, farm 

ponds, etc. which help to reduce peak discharge and capture a large amount of runoff 

resulting in increased groundwater recharge. Scientists are now focusing on the impact of 

these conservation practices on watershed hydrology including runoff, sediment, nutrient 

loss, quality of water etc. 

Hydrological modelling is one of the most relevant methods used to evaluate the 

conservation structures impact on hydrology of a watershed.  It is a difficult and        

time-consuming process to physically determine the efficiency and performance of 

conservation practices at the farm level.  Modelling approaches are widely used to 

determine the efficiency of conservation practices in minimising nutrient runoff and 

sediment (Santhi et al., 2006) and advancements in computer processing technology have 

indeed made it possible for scientists to use hydrological models to evaluate the 
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conservation practices impact on watershed hydrology.  For watershed modelling studies, 

adequate knowledge of characteristics of the watershed, climate and conservation 

structures are needed. 

According to Chow et al. (1988), the models represent the hydrological cycle as a 

system with various components such as inputs (e.g. rainfall, temperature) and outputs 

(e.g. discharge, sediment yield etc.) linking these components using a set of equations.  

Watershed models capable of representing such processes can be used to improve 

knowledge of the relationship between hydrological processes, erosion and management 

practices.  Numerous models can predict runoff, nutrient loss, sediment yield, erosion etc. 

from a catchment including SWAT (Soil and Water Assessment Tool) (Arnold et al., 

1998).  SWAT model has been commonly used for determining several environmental 

and water quality scenarios among the various available watershed models.  Apart from 

being readily available, SWAT has the adaptability to simulate various conservation 

practices.  The effectiveness of conservation practices in terms of water quality is also 

assessed using SWAT model (Arnold and Fohrer, 2005).  The SWAT model has been 

successfully used by numerous researchers to predict sediment yield and streamflow from 

the watershed (Pisinaras et al., 2010; Nasrin et al., 2013).  

Over the last few decades, studies related to climate change and its effects on 

both natural and man-made processes have gained significant attention. Climate change, 

accompanied by global warming, has become an important environmental concern in 

today’s world.  Many effects of climate change on the environment have already been 

reported.  Its impact on hydrology and water resources is of great significance among the 

observed effects.  Specifically, the effects of climate change on regional hydrology are 

significant, as the climate and hydrological cycle are physically interrelated.  Climate 

change results in temperature rises, changes in precipitation patterns as well as snow 

cover, decreases water supply, rises water demand, brings about changes in groundwater 

recharge, results in severe events like floods and droughts, etc. which, in turn creates 

additional stress for the water managers and policy makers.  Anthropogenic activities 

resulting in emissions of greenhouse gases and aerosols are the primary causes of 



4 
 

climate change.  Impact assessment of climate change is unpredictable in nature.  There 

is uncertainty at all stages in the methodology of a climate change impact assessment.  

Management and planning of water resources has become a challenging task as a result 

of climate change uncertainties.  It will be difficult to adjust to these impacts in future 

without a drastic and appropriate plan of action immediately. 

Several researchers have studied the impact of climate change on hydrology and 

water resources, analysis of variation trends in temperature and rainfall, watershed 

modelling approaches to assess the future impacts of climate change, assessment of 

extreme hydrological events under future climate change scenarios etc.  Temperature 

and rainfall shifts due to global warming have already occurred in many parts of the 

world.  According to independent reports by NASA and the National Oceanic and 

Atmospheric Administration (NOAA), global surface temperature in the year 2018 was 

the fourth warmest since 1880.  As a result of global warming, atmospheric 

concentration of carbon dioxide and other trace gases are rising.  These greenhouse 

gases will change the radiative balance of the atmosphere resulting in the alteration of 

climate variables. According to the NOAA Annual Greenhouse Gas Index, radiative 

greenhouse gas forcing increased by 41% from 1990 to 2017, with carbon dioxide 

responsible for a significant portion, about 82%.  Greenhouse gas concentrations 

experienced a steady increase in carbon dioxide (CO2) levels as well as other principal 

greenhouse gases in the atmosphere at a new peak from 2015-2019, with CO2 growth 

rates close to 20% higher than in the previous five years, as reported by the WMO.  

Under these climate change conditions, hydrological modelling is the common method 

for evaluating the future impacts of climate change on water resources. 

For simulating projected conditions of climate change, General Circulation 

Models (GCMs) are a reliable tool which gives us an idea of how the climate is going to 

change in future.  There will be mismatch between regional variables and those simulated 

by GCMs.  It is therefore mandatory to downscale GCM output for a specific area of 

interest in order to regionalize global climate data.  Regional climate models (RCMs) 

which are applied for this purpose can be broadly categorised as physical-deterministic 
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and statistical RCMs (Varis et al., 2004).  Variations may exist within the RCM derived 

data as compared to reference period data. Therefore, the bias between the observations 

and the RCM output must be eliminated by some bias correction method prior to impact 

related studies.  Bias corrected data are then fed to hydrological models for climate 

change impact assessment. 

The Earth System Grid Federation (ESGF) is commonly used to assess climate 

data, which is a main tool of World Climate Research Programme (WCRP) for providing 

global and regional climate simulations along with observations and further study over 

the next decade. ESGF provided greater flexibility to generate large number of CORDEX 

RCM simulations developed by a number of modelling groups across the globe, and their 

GCMs derived from Coupled Model Intercomparison Project Phase 5 (CMIP5).  

CORDEX-SA is specifically designed for climate data projections in the South Asian 

zone.  High-resolution simulations of 20
th

 century climatic change and future climate 

projections have been developed at Centre for Climate Change Research of Indian 

Institute of Tropical Meteorology (CCCR-IITM) in the South Asian region which is 

available on the CCCR-IITM data portal.  The CGIAR Research Program on Climate 

Change, Agriculture and Food Security (CCAFS) data repository also provides           

high-resolution climate datasets for global and regional climate change impact 

assessment.  

 Several studies have explored the impact of climate change on extreme 

hydrological events.  The majority of studies focused on flood events (Kobierska et al., 

2013).  Few studies have focused on the relationship between drought and climate change 

(Muller, 2014).  Drought would have an inevitable impact on water resources.  This leads 

to further challenges for agriculture as well as food production.  Future climate change is 

projected to analyse the impact of extreme events on the availability of water resources.  

Such projected condition seems to be of interest to water resource managers for 

sustainable resource planning and management.  In fact, it provides local management 

authorities with a planning tool to establish sustainable adaptation options.  
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There are different hydrological models used for climate change impact 

assessment that may be process-based, semi-distributed, distributed etc.  Most of the 

models were designed for flood forecasting, water yield estimation, erosion studies etc.  

Studies incorporating output from climate models into hydrological models have 

developed extensively throughout the world over the last two decades.  Climate change 

studies have used standard hydrological models, such as the Soil and Water Assessment 

Tool (SWAT), the Hydrological Simulation Program-FORTRAN (HSPF), the Variable 

Infiltration Capacity (VIC) and the Generalized Watershed Loading Function (GWLF).  

 Generally, India has been extremely vulnerable to climate related severe events 

such as floods, droughts and cyclones.  Extreme rainfall during monsoon and severe 

drought during summer has become a recent trend in India.  Although the Kerala state in 

India has an average precipitation of 3000 mm per year, the state faces extreme water 

shortage during the summer months.  Kerala was also hit by extreme floods in 2018 and 

2019 due to heavy rainfall.  In Kerala, all the rivers flow full during the monsoon, many 

of them eventually dry up in summer. Bharathappuzha, also known as the Nila, with a 

length of 209 km, is the second longest river in Kerala.  Kalpathipuzha, Gayatripuzha, 

Thuthapuzha and Chitturpuzha are the four major tributaries of Bharathappuzha.     

The average annual discharge of Bharathapuzha is 3.94 km³, of which Thuthapuzha 

contributes approximately 42% (1.6 km³) (Raj and Azeez, 2009).  The Bharathappuzha 

River is a source of water for both the Kerala and Tamilnadu states, covering                

the districts of Malappuram, Thrissur and Palakkad in Kerala and two districts,             

namely Coimbatore and Tiruppur in Tamilnadu.  The river is now facing            

significant threats to its survival.  Among them, sand mining is prominent as it       

deepens the river beds.  Ecologists have predicted that extreme consequences will arise     

as a result of sand mining resulting in the death of the river in the near future.  The       

river used to flow smoothly even in acute summers, until a few decades ago.  

Significant climate change has also modified the pattern of river flow.  Extreme events 

due to climate change can be adjusted in the future by properly managing water resources 

through soil and water conservation.  Therefore, a detailed study is needed to understand 



7 
 

the effects of climate change and conservation practices on the river basin.  For this 

research, a modelling approach is used to analyse the impacts in the Thuthapuzha        

subbasin. 

Modelling approach will help to simulate the long-term effects without the need 

for time-consuming and costly experiments.  In addition, models can be used to answer 

the “if-then” questions that are often impossible to observe in the real world (Fu et al., 

2006).  Since field observations cannot be extrapolated to the basin scale, the practice of 

using mathematical models is quite accepted these days (Verstraeten et al., 2002), 

although it has been widely reported that insufficient good quality observations are a 

limiting factor for modelling applications (Bormann and Diekkruger, 2003).  From this 

perspective, appropriate and flexible hydrological models are needed to address poor 

quality data in order to provide effective tools for water resource managers.  Among the 

models available, the SWAT model used in this study can predict impacts and also 

evaluate best management practices in agriculture, specifically the soil and water 

conservation practices adopted in watersheds.  Hence, this research work involves the 

setting up of a hydrological model SWAT for the area, and assessing the impacts of 

structural conservation measures and climate change on water yield and drought intensity 

in the watershed with the following objectives. 

1.To set up a hydrological model (SWAT) for the area. 

2.  To assess the impact of conservation structures on monthly stream flow and 

sediment yield. 

     3. To predict the impact of climate change on water yield and drought intensity. 

With this background, the impact of climate change and conservation 

structures on streamflow and sediment yield of the Thuthapuzha subbasin is evaluated 

and explained in the following chapters. 

 

 



Review of Literature 
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CHAPTER II 

REVIEW OF LITERATURE 

This chapter includes a detailed review of the previous research work conducted 

in India and abroad in the field of hydrological modelling based on SWAT, steps 

involved in setting up of the SWAT model, impact assessment studies related to both 

climate change and conservation practices. 

2.1 WATERSHED HYDROLOGY AND ITS IMPORTANCE 

Watershed is defined as the basic unit of land that drains water to a common 

outlet for the water resource management (Edwards et al., 2015).  Hydrology, a study     

of the distribution and movement of water throughout the earth, describes both              

the hydrological cycle and water resources.  As water is a renewable natural resource,       

it is recycled continuously and returned to the ecological system through the    

hydrological cycle. The hydrological cycle is the fundamental purification method for 

water on Earth as all components in water are left behind during the transition from liquid 

water to water vapour (Rast et al., 2014).  Precipitation, interception, depression storage, 

evapotranspiration, infiltration, percolation, ground water and runoff are the main 

components of the hydrological cycle.  

Watershed hydrology lays the foundation for understanding hydrological 

processes and water resources management and planning.  Understanding how water is 

used and recycled through a watershed is the basis for explaining the interaction between 

land and water.  From a number of perspectives, water resource management has become 

an important issue, including the future development of water bodies, the protection of 

water bodies from pollution and over-exploitation, and the prevention of conflicts.  In 

order to develop and protect water resources, detailed hydrological information 

prevailing in the chosen catchment area is needed. 
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2.2 HYDROLOGICAL MODELLING 

Model is the simplification of reality and it is the representation of real world 

phenomena (Wheater et al., 2008).  A hydrological model is an approximation of 

complex realities through a system concept.  A system consists of a group of interactive 

or interrelated components that form a complex whole.  The ultimate aim of the 

hydrological system research is to study the function of the system and predict its output 

in order to understand different hydrological processes.  The best model is the one that 

produces outputs that are close to the real world, using minimum number of parameters 

and model complexity.  The model contains different parameters describing the 

characteristics of the model.  Rainfall data and drainage area are the main inputs needed 

for almost all hydrological models.  In addition to that, watershed features such as soil 

characteristics, vegetation, topography, characteristics of ground water aquifer, weather 

parameters like temperature, solar radiation etc. are also taken into consideration.  

Water resource management in a single river basin system is the best way to 

address water-related issues.  However, there are significant gaps in many areas where 

water balance planning requires basic knowledge of water resources.  Among the 

resources available, hydrological models are generally used to gain adequate knowledge 

of the river basin characteristics in order to bridge these gaps.  There are models that can 

evaluate the impact of natural and man-made changes on water resources and quantify 

the available water resources both spatially and temporally.  The main challenges, 

however, are the selection and use of these models for a specific basin and management 

plan.  Choosing a model depends on several factors such as the study purpose and the 

availability of the model (Ng and Marsalek, 1992).  Several hydrological models have 

been developed world wide to determine the impact of climate and soil characteristics on 

hydrology and water resources.  All these models can be used in large and very complex 

basins (Devi et al., 2015).  Each and every model has its own unique features.  Monthly 

water balance models or rainfall-runoff models are effective in evaluating regional water 

resource management in order to determine the impact of climate change on watershed 
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hydrology (Arnell, 1992).  Hydrological models are therefore now considered to be an 

important and vital tool for managing water and the environment. 

2.2.1 Classification of models 

Scientists have used a number of ways to categorise and separate models based on 

spatial and temporal resolution, input variables, model simplicity, physical concepts etc.  

Even though there are many ways to categorise models, not all models fall into a 

particular group as they have been designed for different applications (Singh, 1995). 

The hydrological models were divided into two groups by Chow et al. (1988); 

physical and abstract.  Physical models are again classified as scale models and analog 

models.  Scale models are a scaled down or scaled up model of the real world, while 

analog models use another physical system with similar prototype properties.  The 

mathematical form of a system that can be classified as stochastic and deterministic 

models based on how they handle the randomness of the hydrological process is 

demonstrated in the abstract model.  Stochastic models allow a certain randomness      

that results in a single set of inputs with different output values and are based on the 

analysis of historical events, usually river discharge and rainfall (Ahmad et al., 2001;          

Tesfaye et al., 2006).  For a single set of input values, deterministic models generally 

produce the same output.  Cunderlink (2003) divided the deterministic models into three; 

lumped models, where the variable or parameter is assumed to have an average value for 

the entire catchment area, semi-distributed, where the parameters are partially allowed to 

change in space by dividing the catchment area into several subbasins and distributed 

models, where all variables and parameters have different values.  Empirical, conceptual 

and physically based models are another important classification of deterministic models.  

Empirical models are generally lumped models that are based on the analysis of      

parallel input-output time series. The Artificial Neural Network (ANN) model, which      

has the potential to successively learn from data, also known as the data-driven model, is 

one of the most recent approaches in this category (Govindaraju and Rao, 2000;                    

Antar et al., 2006).  The conceptual model, which can be lumped or distributed, portrays 

catchment as an integrated conceptual component and also integrates certain aspects       
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of the physical system.  Examples of the conceptual models are TOPMODEL             

(Beven and Kirkby, 1979) and Soil and Water Assessment Tool (SWAT) (Arnold et al., 

1998).  Hydrological variables observed, usually river flow data, are needed for the 

calibration of both empirical and conceptual approaches in order to set up a model 

(Tessema, 2011).  Physically based models are clearly based on the interpretation of 

physical processes through the application of fundamental hydrodynamic principles.  The 

physical models can resolve several limitations of the other two models due to the 

physical interpretation of parameters.  It can be used in ungauged watersheds, assuming 

that the parameters or variables required for the model can be observed.  Moreover, 

physical models can provide substantial amount of data even beyond the boundary and 

can be applied for a broad range of applications. Water and Environmental Consultants – 

Catchment (WEC-C) (Croton and Barry, 2001), Systeme Hydrologique Europeen model 

(SHE) (Abbott et al., 1986) are a few examples.  Based on time factor, models are 

classified as static and dynamic models.  Static model excludes time while dynamic 

model includes time.  Another time based classification is by Wheater et al. (2008) as 

event-based and continuous models.  Those models generate output over a specific time 

period, called event-based models, while continuous models produce continuous output. 

2.3 SWAT (SOIL AND WATER ASSESSMENT TOOL) MODEL 

Soil and Water Assessment Tool (SWAT) model developed by USDA 

Agricultural Research Service is a continuous-time, semi distributed, process based river 

basin or watershed scale model (Arnold et al., 1998; Neitsch et al., 2005).  SWAT works 

on a daily basis and is designed to evaluate the effect of land use and management 

practices on runoff, sediment, and agricultural chemical yields in ungauged watersheds.  

It is also used to assess the environmental impact of best management practices (BMPs) 

and alternative management strategies for large catchments.  The SWAT model contains 

subbasin, reservoir, and channel routing components.  These components are modelled on 

the basis of scientific concepts and equations. In SWAT model, a watershed is divided 

into different subwatersheds, and thereafter subdivided into Hydrological Response Units 

(HRUs) consisting of homogeneous land use, management, topography, and soil 



12 
 

properties (Arnold et al., 2012).  The model enables users to model watersheds with less 

available data and use alternative input data such as climate and land use for runoff, 

sediment, water quality and other output parameters to determine predictive future 

scenarios (Venkatesh et al., 2018). 

The SWAT model includes built-in climate, soil, and plant growth datasets that 

can be used as data sources for running the model.  Daily weather parameters like 

rainfall, maximum and minimum temperature, solar radiation, relative humidity and                 

wind speed used in this model are capable of describing water and sediment yield, 

vegetation growth and nutrient cycle (Devi et al., 2015).  SWAT also contains the 

WXGEN (Sharpley and Williams, 1990) weather generator model for generating weather 

information or filling gaps in measured data.  Three methods are used in the model         

for estimating the reference evapotranspiration (PET), namely Penman-Monteith            

(Monteith, 1977; Allen, 1986), Hargreaves (Hargreaves and Samani, 1985) and Priestley-

Taylor (Priestley and Taylor, 1972).  SWAT uses two options for determining surface 

runoff volume; the Green and Ampt (1911) infiltration method and the SCS curve 

number procedure.  Channel routing in SWAT is done by variable storage routing method 

or the Muskingum River routing method.  A simplified form of the EPIC crop model 

(Williams et al., 1984) is used in the module for crop growth and biomass production.  

To estimate the possible accumulation of biomass (Monteith, 1977) along with variations 

in water, temperature and nutrient stress, the model uses the Monteith method.  SWAT 

also simulates erosion and water quality processes.  

2.3.1 Applications of SWAT Model 

SWAT applications have experienced tremendous growth globally over the last 

few years.   Modelling of the hydrologic balance of the watershed is the basis for almost 

all SWAT applications (Gassman et al., 2007).  Modelling hydrology of a watershed can 

be divided into two main categories, namely the land phase and the routing phase.  The 

land phase regulates the quantity of water, sediment, nutrient and pesticide loads at the 

main channel of each subbasin, while the routing phase describes the flow of water, 

sediment, etc. to the outlet through the watershed channel network.   
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Runoff simulation is an essential aspect of hydrological modelling of a watershed 

and is the foundation for further research in hydrology related issues.  The runoff 

simulation consists mainly of surface runoff, ET, groundwater and soil water.  Arnold 

confirmed the applicability of the SWAT model to simulate runoff at national, basin and 

even smaller scales (Zhao et al., 2013).  With reference to a small watershed in the 

United Kingdom, Kannan et al. (2007) concluded that the flow output was more accurate 

using the curve number method.  Van Liew and Garbrecht (2003) analysed the capability 

of the SWAT model in predicting streamflow under different climatic conditions and 

found that SWAT can accurately simulate streamflow under dry, average and wet 

climatic conditions.  Yang et al. (2016) reported that in the large-scale Ru River Basin, 

the temporal resolution of precipitation inputs could have a significant impact on daily 

runoff simulations, and the sub-daily SWAT model was best suited to simulate peak 

flows during flood season.  The results of various DEM resolution data on runoff 

simulation were analysed by Nagaveni et al. (2019), in the Krishna Basin of India and 

results showed that the simulation of runoff is sensitive to varying DEM resolution, with 

variations up to a maximum of 5 percent from different DEMs. 

Several studies have demonstrated the applicability of SWAT model to predict 

sediment loads at different watershed scales.  Chu et al. (2004) simulated the sediment 

load using SWAT in the Warner Creek watershed and found good correlation between 

the predicted and measured annual sediment load, but there was a poor correlation 

between the monthly sediment loads.  In order to address snowmelt-induced problems in 

predicting sediment loss, sediment yield equation was modified by Tolston and 

Shoemaker (2007) and observed an enhanced sediment loss prediction.  Sediment 

simulations using SWAT model have also been conducted in Asia, Europe, and North 

Africa.  Based on daily observations of an agricultural watershed located in eastern India, 

Behera and Panda (2006) concluded that SWAT has the potential to effectively simulate 

sediment yield during the entire rainy season.  Kaur et al. (2004) observed that the annual 

sediment yield simulated by SWAT model would be reasonably good for the sample 

watershed in Damodar-Barakar, India, the second most severely eroded area in the world.  
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In some studies, problems with temporal and/or spatial rainfall data were a possible   

cause of inconsistency in sediment yield results (Bieger et al., 2014; Lu et al., 2014).         

Bieger et al. (2014) also indicated that the low level of precision of the soil and land use 

data used, the poor resolution of the Digital Elevation Model (DEM), and problems 

related to the transferability of the Modified Universal Soil Loss Equation (MUSLE) 

(Williams and Berndt, 1977) may have contributed to further errors in the sediment yield 

output.  

In addition, SWAT is also used to address water quality issues.  Due to the lack of 

observed data for calibration and validation of the model, the application of SWAT for 

water quality simulations is comparatively poor.  It is time-consuming and expensive to 

collect water quality parameters at the field level and due to this reason most SWAT 

users may not be able to perform water quality simulations without financial assistance 

from local government or international agencies.  Watershed models are useful for 

determining contamination from different sources of pollutants, including faecal bacteria 

(Benham et al., 2006).  Non-point source (NPS) pollution is one of the most critical 

factors that have a negative impact on the global ecosystem.  NPS pollution is mainly due 

to soil and water erosion in the river basin, the use of pesticides and fertilizers in 

agricultural land, the disposal of rural livestock and garbage, etc.  Currently, NPS 

pollution researches using SWAT focus mainly on nitrogen and phosphorus (N&P).  The 

SWAT model can also examine the contributing factors and the amount of NPS pollution 

related substances.  Yazdi and Moridi (2017) used the SWAT model and concluded that 

the most significant pollution component of the Seimare reservoir is the waste water from 

Kermanshah city and the controlled waste water discharge resulted in the reduction of 

about 40-50 percent pollutants entering the reservoir under drought conditions.  The 

application of SWAT to simulate nutrients has also been analysed in many countries.  

SWAT nitrogen and phosphorous simulations were verified in India with measured data 

from eastern Indian districts of Hazaribagh (Tripathi et al., 2003) and Midnapore      

(Behera and Panda, 2006).  Both authors reported that it is possible to effectively use the 

SWAT model to predict nutrient losses.  
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SWAT can also be used to predict the impact of land use changes, including 

different conservation practices on water quality and hydrological components.       

Mishra et al. (2007) reported that the impacts of three check dams on sediment loads in 

the Banha watershed in northeast India were accurately reproduced by the SWAT model.  

Singh and Gosain (2011) used the SWAT model to evaluate the impact of management 

practices on water availability by modelling nine reservoirs as impoundments structures 

in the Cauvery basin, India.  Bracmort et al. (2006) reported an impact study on runoff, 

sediment and total phosphorous by using three SWAT scenario simulations in two small 

watersheds in Indiana.  SWAT model application to evaluate the impact of land use and 

land cover on sustainable development and watershed hydrology is gaining                

attention globally as a result of immense human activities in the natural systems of river 

basins.  The most appropriate land use management practice was identified by                   

Sunandar et al. (2014) in the Indonesian Asaham watershed to reduce suspended 

sediment without affecting water yields.  Tarigan et al. (2018) computed that about       

30 percent of forest cover needs to be preserved in order to ensure sufficient ecosystem 

services to local water resources in Jambi province, Indonesia. 

The impacts of climate change can be measured directly in SWAT, taking into 

account the implications of rising concentrations of CO2 in the atmosphere and changes 

in climate data. Many SWAT studies provide valuable information on the impact of 

changes in CO2 fertilization and/or changes in climate data’s on runoff, plant growth etc 

(Stonefelt et al., 2000; Fontaine et al., 2001; Jha et al., 2006).  Gosain et al. (2006) 

projected the impact of future climate change on runoff of the twelve major river basins 

in India.  In Malaysia, in order to understand hydroclimatic impacts, Tan et al. (2017) and 

Dlamini et al. (2017) incorporated the CMIP5 GCM climate projections into the SWAT 

model.  Researchers used the SWAT model to generate hydrological impacts under both 

historical and future climate change conditions.  Zabaleta et al. (2014) proposed the 

evaluation of the impact of climate change on discharge and sediment yields using four 

climate change projections, integrating two general circulation models (GCMs) and      

two scenarios, from 2011 to 2100.  Mishra and Lilhare (2016) projected rainfall and 
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temperature from two Representative Concentration Pathways (RCPs) 4.5 and 8.5 

scenarios during 2010-2039, 2040-2069 and 2070-2099, and carried out a sensitivity 

analysis.  Several researchers have used SWAT to address climate change impacts on 

both hydrology and pollution losses.  Bouraoui et al. (2002) estimated that in six different 

climate change scenarios, the total phosphorus and nitrogen load increased by 5% to 34% 

and 6% to 27%, respectively, in the Ouse River watershed located in the United 

Kingdom. 

 Several scholars have examined the combined impacts of land use change and 

climate change.  Jayakody et al. (2014) evaluated the future climate change impacts on 

sediment, nutrient transport and the performance of best management practices in the 

Pearl River basin of the Upper Mississippi River.  Mekonnen et al. (2018) observed an 

increase of 16.9 percent in the average annual river flow from 1970 to 2000 in the Upper 

Blue Nile Basin as a result of the combined effects of LULC and climate change.  

Shrestha and Htut (2016) assessed the combined future impacts of land use and climate 

change in the Bago River basin, Myanmar.  Future climate variables projected from six 

GCMs under RCP 4.5 and 8.5 for the 2020s, 2050s and 2070s were used for the study 

and found that combined impacts resulted in an increase of up to 68% in the annual river 

flow (Meinshausen et al., 2011).  Li et al. (2009, 2010) concluded that the combined 

impacts of changes in land use and climate variables could decrease runoff, soil moisture 

content and evapotranspiration. 

2.3.2 Advantages and limitations 

The main benefit of SWAT is its ability to run simulations for large catchments to 

predict hydrological variables under different management activities and physical 

environmental conditions without regular monitoring data (Gassman et al., 2007;   

Daloglu et al., 2014).  The SWAT model has built-in inputs which allow the user to study 

the model.  It is possible to model very large basins or a variety of management practices 

without excessive investment of time and money.  The attractive factor is that the 

calibration, uncertainty and sensitivity analysis of the model can be performed using a 

separate program called the SWAT-CUP (SWAT-Calibration and Uncertainty 
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Procedures).  SWAT model can be used in watersheds without any gauging stations and 

allows users to study long term impacts.  

However, SWAT has some limitations.  SWAT was developed by American 

scholars. Data used in the model, including soil types and land use types, are all based on 

the locations in the United States.  Use of these variables as input will result in 

uncertainty about the accuracy of the simulation.  It does not simulate sub-daily events, 

such as a single storm event, and cannot simulate detailed flood-based and sediment-

based events.  In the spring and winter months, the modelling of flood plain erosion and 

snow melt erosion is difficult (Hamlett and Peterson, 1998; Shoemaker et al., 2005;     

Dai et al., 2005).  The existing SWAT model needs to use the latest data for calibration to 

make simulation more reliable when new data is added, which is a time-consuming and 

laborious process.  Since the SWAT model divides watersheds into hundreds of HRUs, it 

is difficult to manage and modify input files when required.  

2.4 SETTING UP OF SWAT MODEL 

2.4.1 Datasets for SWAT model setup 

 Soil map, land use or land cover map and DEM are the basic maps used as input 

in the SWAT tool.  Meteorological data like precipitation, maximum and minimum 

temperature, wind speed, solar radiation, and relative humidity of the study area are 

required for setting up of the model.  For the analysis of the results, daily runoff volume, 

flow velocity and sediment yield, physical and chemical properties of soil etc. can be 

used depending on the study purpose.  SWAT also has an option to incorporate reservoir 

details like surface area, volume, year of construction etc. 

2.4.2 Sensitivity analysis, calibration and validation of SWAT 

Sensitivity analysis is a method for quantifying the uncertainty in the output of a 

model with respect to the uncertainty in its inputs.  Identification of the most sensitive 

parameters is the first step in the calibration and validation of the SWAT model.  SWAT 

is a complex model with many parameters, making it difficult to calibrate manually 

(Abbaspour, 2012).  Sensitivity analysis is as important as the calibration process, as it 
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gives an idea of which parameter needs to be calibrated in order to reduce model 

uncertainty.  It helps to estimate the relative ranking of those parameters which mostly 

affect output variance due to input variability (Van Griensven et al., 2002).  Ranking 

results in a possible reduction in the number of parameters to be calibrated, thus reduce 

the computational time needed for model calibration and provide guidance on estimating 

the parameters for the calibration process.  Sensitivity analysis can be divided into two 

categories, one at a time and global sensitivity analysis depending on the number of 

parameters analysed (Brouziyne et al., 2017).  Changing each model input parameter one 

at a time (OAT) is one of the simplest methods for conducting a sensitivity analysis, 

while other input parameters remain unchanged. The Global sensitivity analysis (GSA) 

considers changes in model outputs as input parameters can vary at the same time over 

specified ranges (Marino et al., 2008; Saltelli et al., 2008; Iooss and Lemaître, 2015).  

Global methods usually require more computational work than OAT methods and are 

mostly probabilistic in nature; they consider uncertainty as probability distributions in 

model inputs and outputs. 

Calibration is the process in which the selected model parameters and                

variables are adjusted to match the model output to the results observed.  Calibration is 

considered important because the model input can have uncertainties (Lenhart et al., 

2002).  Calibration can be done manually or using SWAT auto calibration tool                        

(Van Griensven and Bauwens, 2003; Van Liew et al., 2005).  Model validation is the 

process of re-running the model without altering any parameter values that may have 

been adjusted during calibration, using another time series of input data.  Calibration and 

validation are generally carried out by dividing the observed data available into two 

datasets; one for calibration, and another for validation.  The model is calibrated using the 

major portion of the data, and the remaining fraction of the record is used to validate the 

model.  Graphical and statistical methods are generally used to check whether the model 

has been properly calibrated and validated.  Calibration and validation are carried out in 

complex watersheds using multi-variable and multi-site approaches (Zhang et al., 2008; 
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White and Chaubey, 2005).  The multi-site approach uses data from multiple sites, while 

the multi-variable approach uses multiple variables for analysis. 

2.4.2.1 SWAT-CUP (SWAT Calibration and Uncertainty Procedures) 

SWAT-CUP is developed by Abbaspour et al. (2007) to make an interface with 

the SWAT model.  SWAT-CUP is used to assess the prediction uncertainty of the 

calibration and validation results of the SWAT model.  Within the SWAT-CUP it is 

possible to perform different sensitivity analysis, calibration, validation, and uncertainty 

analysis.  The SWAT-CUP is a public domain program used to link five different 

uncertainty algorithms; Sequential Uncertainty Fitting Ver.2 (SUFI-2), Generalized 

Uncertainty Estimation (GLUE), Particle Swarm Optimization (PSO), Markov Chain 

Monte Carlo (MCMC) and Parameter Solution (ParaSol) to the SWAT model 

(Abbaspour, 2015).  SWAT-CUP allows the user to select one of these algorithms and 

run the operation many times until the convergence between the simulated and the 

observed objectives has been reached. 

The extent to which all uncertainties are contributed for can be quantified in 

SUFI-2 by using two factors, namely p-factor and r-factor.  Calibration in SUFI-2 is 

accomplished when both factors are satisfied.  The percentage of measured data 

bracketed by the 95% Prediction Uncertainty (95PPU) is the p-factor, which ranges 

between 0 percent and 100 percent whereas the average width of the 95PPU band divided 

by the standard deviation of the measured data is the r-factor, which ranges from 0 to 

infinity. The p-factor of 1 and the r-factor of zero is a simulation that corresponds exactly 

to the measured data. 

The program SWAT-CUP couples various programs to SWAT model and the 

general concept is shown in Figure 2.1.  Steps involved are as follows: 

1. Model parameters are written to model by different calibration programs. 

2. Swat edit.exe edits SWAT input files, inserts new parameter values and runs 

SWAT model 

3.  Finally, swat extract.exe extracts the desired variables from the output SWAT 

files and writes them to the output. 
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Fig. 2.1 Linkage between optimisation program and SWAT in SWAT-CUP 

 

2.4.3 Model evaluation 

The procedure for evaluating the model includes calibration and validation 

process.  A number of test statistics and techniques may be used to evaluate the model 

and to test the model’s fitness to simulate the reality.  On the basis of test criteria and 

statistical indices, the performance of the model can be assessed, the most popular of 

which are Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970), Coefficient of 

determination (R²) (Moriasi et al., 2007), Percent bias (PBIAS) (Gupta et al., 1999) and 

Root Mean Square Error ( RMSE). 

2.5 IMPACT OF CONSERVATION PRACTICES ON WATERSHED HYDROLOGY 

The runoff and suspended sediment process has changed significantly in many 

rivers due to the impacts of climate change, the rise in extreme precipitation events and     

human activities in recent decades (Panda et al., 2011; Tang and Lettenmaie, 2012;                

Jiang et al., 2017; Vaighan et al., 2017).  Hydrological impact of conservation practices 

is generally believed to minimise and delay surface runoff and thus reduce soil erosion                

(Sahin and Hall, 1996; Castillo et al., 1997; Quinton et al., 1997; Liu and Huang, 2001).  
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The implementation of integrated soil and water conservation measures in watersheds is 

one of the key factors responsible for reducing sediment discharges in the river basins.  

At the catchment level, these measures resulted in a decrease in flood peak discharges 

and volumes and increased base flows as a result of snowmelt impacts in winter           

and spring (Potter, 1991).  Most of the catchment level studies have found that the dry 

season discharge from forest catchments is lower than that from natural grasslands         

(Edwards, 1979; Smith and Scott, 1992; Kramer et al., 1999; Best et al., 2003).  

However, other researchers indicate a rise in the base flow following afforestation in 

some semi-arid and humid regions (Bonell and Balek, 1993; Sandstrom, 1995).  Soil and 

water conservation measures usually alter the topographical characteristics of the slope 

and have the potential to reduce raindrop kinetic energy, increase the roughness of        

the slope, and result in storage and retention of runoff and sediment.  The most important 

role is to reduce erosion energy and thus reduce the level of pollutant migration          

(Han et al., 2018). 

Research suggests that physical, biological and agronomic interventions not         

only help to minimise runoff and soil erosion, but also increase soil fertility                

status (Mekuria et al., 2007; Meshesha et al., 2012; Jemberu et al., 2018).  Physical 

conservation practices have dramatically changed the hydrological regime by changing 

the runoff pathways as well as the spatial and temporal distribution of runoff generation 

(Huang and Zhang, 2004).  Several studies have shown that the methods used to 

minimise soil loss and runoff to negligible levels are typically based on a combination of 

practices that help to maintain relatively high soil infiltration rates and efficient runoff of 

water (Herweg and Ludi, 1999).  A number of agro-ecological zones and land use areas 

have been identified as having a positive impact of individual conservation practices on 

hydrology and soil loss (Descheemaeker et al., 2006; Collick, 2008).  However, the 

assessment of the overall impact of the various conservation practices at the watershed 

level appears to be more suitable for practical decision-making processes in order to 

further develop the practices (Mekonen and Tesfahuneg, 2011).  In addition, conservation 

practices must be maintained in order to ensure the long-term sustainability of practices. 
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2.6 MODELLING OF CONSERVATION PRACTICES 

Watershed models that simplify and predict complex processes in a watershed are 

useful tools for analysing best management practices and estimating their impact on     

soil erosion (Arabi et al., 2008).  In some studies, modelling soil and water     

conservation practices have been useful in determining the impacts of contour farming 

and vegetative filter strips, which, among others, comprise non-structural conservation                 

practices (Brunner et al., 2008; Parajuli et al., 2008; Kyalo et al., 2014).  Majority of            

research focused on the small-scale, on-site and in-situ impacts of conservation practices        

(Inbar and Llerena, 2000; Schiettecatte et al., 2005; Nyssen     et al., 2007; Verbist et al., 

2009).  Only a few scientists have focused on upscaling the impact of conservation 

practices at catchment level (Ngigi et al., 2007; Andersson     et al., 2009; Ouessar et al., 

2009) and sometimes more spectacularly at global level(Wisser et al., 2010).  This can be 

easily achieved through a modelling approach.  Modelling of hydrological processes has 

proven to be a very efficient tool for evaluating and predicting soil erosion processes for 

guiding soil and water conservation and management under very different soil, crop, 

climate, topography and management conditions (Pla, 2000).  The lack of awareness of 

the impacts of conservation structures and inadequate economic assistance to implement 

them has also led to their low adoption rate (Gathagu et al., 2017).  Among the models 

available, SWAT (Soil and Water Assessment Tool) is found to be the most common in 

simulating conservation practices at watershed scale.   

2.6.1 Simulation of Conservation Practices using SWAT Model  

SWAT has already developed a method for modelling a number of agricultural 

practices, including changes in the application of fertilizers and pesticides, tillage, crop 

rotation, ponds, wetlands and dams.  Conservation measures can be defined in the 

SWAT model by altering the SWAT parameters to represent the impact of the practices 

on the simulated processes (Bracmort et al., 2006).  Arabi et al. (2008) proposed a 

method for representing conservation practice with SWAT model which includes a 

discussion on the specific parameters that need to be modified on the basis of the role of 

conservation practices.  Different hydrological and water quality processes that have 
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been taken into account include: surface runoff (peak and volume); infiltration; upland 

nutrient and pesticide loading; upland erosion (sheet and rill erosion); gully and 

channel erosion; and within-channel process (Arabi et al., 2008).  After baseline 

simulation has been carried out using the SWAT model, sensitivity analysis, calibration 

and validation is performed.  Thereafter, at the point-objective function such as R², NSE 

etc. satisfying the calibration, the final parameters calibrated value were modified in 

"edit SWAT input" and the parameters needed to be modified were altered and              

the SWAT model was run again to predict the impacts of conservation practices                 

(Ayala et al., 2017).  Examples of parameters involved in the representation of some of 

the conservation practices are shown in Table 2.1. 

Parameter value obtained from a model calibration process or a 'suggested' value 

identified from the literature review, previous experience of the analyst or previous 

research in the study area can be used to select the baseline values as well as the values 

used to predict conservation practices for the input parameters (Arabi et al., 2008).  If 

the model is not sensitive to the chosen parameters, the process for representing 

conservation practices by changing the appropriate model parameters would be 

impaired. Therefore, sensitivity analysis should be carried out to evaluate that the 

parameters chosen for the representation of practices are not insensitive parameters 

(Arabi et al., 2008).  In general, in order to validate model simulation, advanced soil and 

water conservation impact assessments may be needed to satisfy the interaction between 

different conservation structures and heterogeneous landscape conditions in order to 

support appropriate future decision-making. 
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Table 2.1 Parameters used for the representation of conservation practices in 

SWAT (Arabi et al., 2008). 

 

SWAT has been used in a number of previous modelling studies to              

evaluate conservation practices impact around the world.  The model was used by                    

Vache et al. (2002) to determine the effects of crop rotation, strip-cropping and riparian 

buffer strips on water quality in two watersheds in central Iowa.  Two segments of the 

Major Cypress Creek watershed were analysed by Santhi et al. (2003) to represent filter 

strips, riparian forest buffers, nutrient management plans, critical area planting, grade 

stabilization structures etc. using the SWAT model.  However, in one of the reports, 

Bracmort et al. (2006) gives a detailed explanation of the way in which parallel terraces, 

field borders, grade stabilization structures and grassy waterways are represented.  The 

lack of numerical guidelines for the representation of conservation practices is not limited 

solely to the SWAT model.  And although researchers have suggested that the parameters 

of the model need to be modified, no numerical procedure has yet been published.          

Van Liew et al. (2003), who successfully modelled the impact of flood retarding 

structures in the Little Washita River in the south-west of Oklahoma, has reported as one 

of the few direct assessments of SWAT reservoirs.  Abouabdillah et al. (2014) assessed 

Conservation practice Function Parameter (input file) 

Grassed waterway 

 

Increase channel cover 

Reduce channel erodibility 

Increasing channel roughness 

CH_COV (.rch) 

CH_EROD (.rch) 

CH_N(2) (.rch) 

Parallel terrace 

 

Reduce overland flow 

Reduce sheet erosion 

Reduce slope length 

CN(2) (.mgt) 

USLE_P (.mgt) 

SLSUBBSN (.hru) 

Field border Increase sediment trapping FILTERW (.hru) 

 

Grade stabilization structure 

Reduce gully erosion 

Reduce slope steepness 

CH_EROD (.rch) 

CH_S(2) (.rch) 
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the impact of conservation measures using SWAT model in a semi-arid river basin in 

Tunisia.  They modelled large dams as reservoirs, contour ridges as potholes filled with 

water and small dams as ponds. 

2.7 IMPACT OF CLIMATE CHANGE ON WATERSHED HYDROLOGY 

Climate change has been described as shifting the climate to a new balancing state 

with dramatically changed environmental components (Landsberg, 1975).  Both natural 

and human factors contribute to climate change.  Possible future climate change due to 

rising greenhouse gas emissions has gained the attention of scientists and policy makers 

in recent years.  Climate change has a number of possible natural, social and economical 

impacts.  As the global average temperature rises, the intensity of these impacts                     

will increase.  The water cycle is expected to accelerate with the rise in temperature              

(Oki and Kanae, 2006).  Evapotranspiration, soil moisture and runoff are very sensitive to 

even slight changes in temperature and rainfall (Milly et al., 2005; Seneviratne et al., 

2010).  

The best way to assess the climate change impact on water resources is to 

simulate the hydrological conditions that will exist under the projected weather 

conditions in the area.  The potential impacts of climate change on the hydrological 

processes include increased evaporation in summer, heavy rains due to increased 

convective precipitation during the summer season, increased tropical storm intensity and 

increased monsoon rainfall in the tropics.  Assessment of the climate change impacts on 

regional watershed hydrology has an important role to play in the management of water 

resources.  Evaluating the effects of climate change on water resources is very             

important for policy makers to minimise the effects and implement coping strategies                  

(Delgado et al., 2010; Fischer et al., 2007).  Impacts of climate change on                    

watershed hydrology are generally determined by defining scenarios for climate change 

inputs to the hydrological model (Gosain et al., 2006; Johnston and Smakhtin, 2014;                      

Srinivasan et al., 1998).  
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Sorg et al. (2012) suggested that the runoff is likely to remain constant or even 

increase significantly in the near future, but would decline for Central Asia by the end of 

the 21st century. Ficklin et al. (2009) assessed the climate change impacts on water 

resources in San Joaquin Watershed, California (USA) using the SWAT model and found 

that changes in carbon dioxide (CO2) and climatic variables greatly affect water yield, 

evapotranspiration and other components of the hydrological cycle.  A significant number 

of literature publications deal with a specific component of the hydrological cycle,           

like streamflow (Fu et al., 2007), runoff (Nunes et al., 2009), groundwater recharge    

(Jyrkama and Sykes, 2007), evapotranspiration (Calanca et al., 2006) or a particular event 

in the year, e.g. peak flows (Cuo et al., 2009), and extreme events (Xiong et al., 2009).  

However, a very few researchers have studied the long-term assessment of the water 

balance of the basin due to the impact of climate change on hydrological processes. 

2.8 CLIMATE MODELS  

The main tool used to develop input data for climate change impact studies is 

climate models.  Climate models are essential to improve our knowledge and 

predictability of climate behaviour in seasonal, annual, decadal and centennial timescales.  

Models analyse the extent to which observed changes in climate can be due to human 

activity, natural variability or both.  Climate models provide essential information for 

decision-making of local, regional and national importance, like agriculture, water 

resource management, transport and urban planning.  Climate models rely on well known 

physical processes that represent the energy transfer and material transfer through the 

climate system.  Various types of climate models have been developed for specific 

applications, ranging from simple energy balance models to three-dimensional Global 

Circulation Models (GCMs) and Regional Climate Models (RCMs). Hydrological, 

general circulation or regional climate model simulations are popular methods for 

analysing the climate change impact on water resources.  Climate models divide the 

Earth's surface into a three-dimensional grid of cells.  In order to model the exchange of 

energy and matter over time, the outputs of the processes modelled in each cell are 
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transferred on to neighbouring cells.  The size of the grid cell describes the resolution of 

the model, the smaller the size of the grid cells, the higher the information of the model. 

2.8.1 General Circulation Models (GCMs) 

General circulation models (GCMs), also known as global climate models, 

simulate climate change resulting from slow changes in certain boundary conditions (like 

the solar constant) or physical parameters (like the concentration of greenhouse gases).  

GCM is a complex mathematical representation of significant components of the climate 

system, such as atmosphere, land surface, ocean, etc., and their interactions.  There are 

both atmospheric GCMs (AGCMs) and ocean GCMs (OGCMs).  Atmospheric GCMs 

(AGCMs) model the atmosphere and apply sea surface temperatures as boundary 

conditions.  The OGCMs characterize the physics and dynamics of oceans and sea ice 

and have been independently developed.  The AGCM and the OGCM can be combined 

together to develop an atmospheric-ocean coupled general circulation model (AOGCM).  

At the end of the 1960s, the NOAA Geophysical Fluid Dynamics Laboratory developed 

the first general circulation climate model that combined oceanic and atmospheric 

processes. 

Some of the climate model equations are based on the laws of physics, including 

the Newton’s laws of motion and the first thermodynamic law, and the model has key 

processes that are approximate rather than physical laws.  GCMs will divide land, 

atmosphere, and oceans into a three-dimensional grid system to solve these equations on 

a computer.  The equations for each cell in the grid are then repeatedly calculated for 

each time-step of the simulation period (Curry, 2016).  Common resolutions for GCMs 

are approximately 100–200 km in horizontal direction, 1 km vertically and generally 30 

min in time-stepping resolution.  GCMs produce large uncertainties and the IPCC (2007) 

recommends that climate change studies should take into account the outputs of different 

models and scenarios. 

2.8.2 Regional Climate Models (RCMs) 

Coarse horizontal resolution is a key limitation of Global Climate Models 

(GCMs). Regional Climate Models (RCMs) operate by increasing GCM resolution in a 
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small, restricted area of interest.  Since RCMs only cover a limited domain, the values at 

their boundary must be explicitly specified as boundary conditions by the results of a 

coarser GCM or re-analysis.  RCMs are used not only for downscaling GCMs, but also to 

obtain useful regional climate data for seasonal climate predictions with similar 

objectives. RCMs have also been effective in enhancing our understanding of           

climate processes, like cloud-radiation, cumulus convection and land surface processes           

(Sen et al., 2004). 

2.8.3 Downscaling methods for climate change projections 

The downscaling of climate models is the process by which large-scale climate 

models are used to make climate predictions at finer spatial and temporal scales to fit the 

purpose of local level research and analysis.  Very high-resolution GCMs will enhance 

regional and local simulations, but remain inaccessible due to the enormous cost of 

computing (Fowler et al., 2007), which results in the adaptation of the downscaling 

techniques (Rummukainen, 2010).  There is no special classification system to be used to 

fully understand and summarise downscaling methods.  Methods are categorised into two 

groups in a number of studies (Fowler et al., 2007; Trzaska and Schnarr, 2014), namely 

dynamic downscaling and statistical downscaling.  Downscaling can be done on                 

both spatial and temporal aspects of climate projections.  The method used to extract                 

finer-resolution spatial climate data from the coarser-resolution GCM output referred to 

as spatial downscaling, whereas the extraction of finer-scale temporal data from the 

coarser-scale temporal GCM output is referred to as temporal downscaling. 

2.8.3.1 Statistical downscaling 

Statistical downscaling involves establishing an empirical relationship between 

historical and/or present large-scale local and atmospheric climatic parameters.  Once a 

relationship is established and validated, future atmospheric parameters used by the GCM 

will be used to predict the future local climate parameters.  This method is based on the 

critical assumption that under different scenarios of potential future climates, the 

relationship between current large-scale circulation and local climate remains valid 

https://www.tandfonline.com/doi/full/10.1080/12265934.2017.1409132
https://www.tandfonline.com/doi/full/10.1080/12265934.2017.1409132
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(Zorita and von Storch, 1999).  Statistical downscaling allows the simulation of multiple 

outputs at the same time, such as precipitation, maximum and minimum temperatures, 

solar radiation, relative humidity and wind speed (Parlange and Katz, 2000), which is of 

great significance for impact studies in particular (Wilby et al., 2004). 

2.8.3.2 Dynamic downscaling 

Dynamic downscaling is a method for obtaining regional climate information 

based on large-scale climate conditions using high-resolution RCMs.  RCMs take 

advantage of the large-scale atmospheric information of the GCM outputs at the lateral 

boundaries and integrate more complex topography, land-sea contrast, surface 

heterogeneity, and detailed physical process information to generate realistic climate 

information at a spatial resolution of about 20-50 km. As the RCM is encased in the 

GCM, the overall quality of dynamically reduced RCM output depends on the accuracy 

and bias of the GCM scenarios (Seaby et al., 2013).  Dynamic models address GCM 

equivalent data and physical processes, but on finer scales, and only deliver results to 

selected limited regions of the globe (Trzaska and Schnarr, 2014). 

2.9 EMISSION SCENARIOS 

The emission scenarios are possible future pathways of human development of 

greenhouse gas and aerosol emissions.  In order to project future climate, climate change 

will be determined according to a possible future scenario.  Scenarios are alternative 

representations of the future and are an appropriate tool to evaluate how driving forces 

can affect the future emission outputs and evaluate the uncertainties associated with 

them.  They help in the analysis of climate change, including climate modelling and 

impact assessment, adaptation, and mitigation.  Future anthropogenic emissions level 

largely depends on political decision making, population growth and technological 

advancements. 

Emission scenarios are an important part of the IPCC assessment and are part of a 

long process and do not describe a single occurrence.  The first set of three scenarios was 

developed in 1990 and used as input to climate models.  The second series, completed in 
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1992, comprised a broader range of driving forces and emissions, the so-called IS92 set 

of six scenarios (Leggett et al., 1992).  The IPCC thoroughly assessed the IS92 scenarios 

in 1995 and found that they were innovative in their coverage of the full range of GHG 

emissions at the time they were published and were effective in driving atmospheric and 

climate models (Alcamo et al., 1995).  In 2000, IPCC published a Special Report on 

Emissions Scenarios (SRES) which discuss four scenario families characterising a set of 

possible future conditions, namely A1, A2, B1 and B2, based on a complex relationship 

between the socio-economic forces driving greenhouse gas and aerosol emissions and the 

levels to which those emissions would rise in the 21st century.  The A1 scenario is 

classified into three groups that characterise alternative directions for technological 

change in the energy system, which include A1FI (fossil fuel intensive), A1B (balanced) 

and A1T (predominantly non-fossil fuel).  These were used in two consecutive reports, 

the Third Assessment Report (TAR) and the Fourth Assessment Report (AR4), and have 

provided common reference points over the last decade for a large portion of climate 

change research.  In 2007, the IPCC reacted to calls for advancement of the SRES by 

facilitating the process that generated the Representative Concentration Pathways 

(RCPs).  In 2013, the Fifth Climate Assessment Report (AR5) of the IPCC identified 

feasible future climate scenarios; the RCPs for the evaluation of radiative forcing changes 

caused by global warming and suggested the use of potential global changes for future 

projections (Moss et al., 2008).  The amount of radiative force expressed in W/m² that 

will arise from greenhouse gases by the year 2100 is represented by each RCP.  The rate 

and trajectory of the radiative forcing is the pathway.   There are four pathways: RCP8.5, 

RCP6, RCP4.5 and RCP2.6 (Fig. 2.2).  The RCP2.6 scenario peaks at 3.0 W/m² before 

falling to 2.6 W/m²
 

in 2100, requiring a strong reduction in greenhouse gas 

concentrations in the 21st century.  After 2100, the scenarios RCP4.5 and RCP6.0 

stabilize at 4.2 W/m² and 6.0 W/m² respectively.  The scenarios RCP4.5 and SRES B1 

are comparable; RCP6.0 is between the scenarios SRES B1 and A1B.  The RCP8.5 

scenario has comparable radiative forcing as that of SRES A2.  Representative 

international intercomparison projects, the Coupled Models Intercomparison Project 
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Phase 5 (CMIP5) and the Coordinated Regional Climate Downscaling Experiment 

(CORDEX), have produced a number of global and regional climate information under 

the RCP scenarios (Giorgi et al., 2012; Taylor et al., 2012; Lee et al., 2013). 

 

Fig. 2.2 RCP CO2 Emission Scenarios  

(Source:  Mann and Kump, 2015) 

2.9.1 Coordinated Regional Climate Downscaling Experiment (CORDEX) 

The Coordinated Regional Downscaling Experiment (CORDEX) initiative is        

a key project of the World Climate Research Program (WCRP) (Giorgi and Gutowski, 

2015), through which regional climate downscaling (RCD) techniques                 

(Hewitson and Crane, 1996) were coordinated, promoting the availability of regional 

climate information across continental regions of the world.  CORDEX is a platform for 

the generation of regional climate projections for impact assessment and adaptation 

studies globally.  In fourteen geographical areas, covering the world's main continental 

regions, various research groups have contributed to the production of climate outputs 

based on different RCMs. The Earth System Grid Federation (ESGF) web portals are the 

main source of CORDEX data.  CORDEX outputs consist of multivariable time - series 

data with spatial and temporal resolution and climate scenarios.  A set of simulations is 

available for each CORDEX domain based on the combination of GCMs and RCMs. 
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2.9.2 Coupled Models Intercomparison Project phase 5 (CMIP5) 

The Coupled Model Intercomparison Project Phase 5 (CMIP5) is a collaborative 

climate modelling framework, coordinated by the World Climate Research Program 

(WCRP), involving 20 climate modelling groups from all over the world; the Coupled 

Modelling Working Group (WGCM).  The Fifth Assessment Report (AR5) of the IPCC 

relies heavily on CMIP5.  CMIP5 has generated a multi-model data set aimed at 

enhancing knowledge of climate, its variability and change through the application of 

global climate system models (Taylor et al., 2012).  Two types of climate change 

modelling experiments are included in the CMIP5 framework (Hibbard et al., 2007; 

Meehl and Hibbard 2007), near-term simulations (10–30 yr) and long-term                 

(century-time) simulations (Meehl et al., 2009).  Both the experiments are carried out 

using AOGCMs, the standard models used in previous phases of CMIP.  CMIP3 was 

extensively evaluated in IPCC AR4 (IPCC 2007a; Meehl et al., 2007).  GFDL-CM3 was 

found to be the best performing model for the Indian conditions. 

2.10 UNCERTAINITY IN CLIMATE PROJECTION AND BIAS CORRECTION  

Characterising and quantifying the uncertainty of climate change projections is of 

great importance for the purpose of detection and substantiation.  One of the limitations 

to the political agreement on adaptation and mitigation policy is the great uncertainty 

associated with future climate change projections.  Forcing, model response and internal 

variability are the three main factors that lead to uncertainty in future climate change 

projections (Hawkins and Sutton, 2009; Tebaldi and Knutti, 2007).  Forced uncertainty 

arises from incomplete understanding of external factors affecting the climate system.  

Uncertainty of the model arises because different models will respond differently to the 

same external force.  Internal variability is the natural variability of the climate system, 

including processes inherent in the atmosphere, ocean, and ocean-atmosphere systems, 

arising in the absence of external force.  Uncertainties arise from a variety of climate 

projection sources (structural model differences, initial conditions, scenarios, parameters 

and resolution / bias-correction), climate impact models (CIMs), and observations 

(Osborne et al., 2013).  Model Intercomparison Projects (MIPs) and Multi-member 
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model ensembles (Collins et al., 2010) are used to evaluate uncertainties regarding 

projected climate data and climate impacts.  The use of a number of climate scenarios    

to describe future climate uncertainty has now become a standard procedure                  

(Arnell et al., 2004). 

GCM outputs are rarely used directly in impact studies because climate models 

show systematic errors due to limited spatial resolution, simplified physics and 

thermodynamic processes, numerical schemes, or inconsistent climate system 

information.  Errors in GCM simulations are significant in relation to historical 

observations.  Therefore, to produce climate projections that are better suited to 

agricultural modelling, it is essential to bias-correct raw climate model outputs.                        

A number of bias correction methods have been developed, ranging from simple scaling 

techniques to more sophisticated distribution mapping techniques, to correct bias RCM 

outputs (Teutschbein et al., 2012).  Selecting an appropriate bias correction method is 

important in order to provide reliable input for the regional impact analysis.  Precipitation 

and temperature projections provided by climate models during the monitoring period 

generally do not fit the observations at the same time period from a statistical perspective.  

The problem with the direct use of regional climate model output for hydrological 

purposes is that the calculated precipitation and temperature are significantly different 

from the precipitation and temperature observed (Frie et al., 2003).  Consequently, the 

biases in output have an impact on other hydrological processes (Hurkmans et al., 2010).  

To remove bias present in the computed climate output results, some form of               

pre-processing is important before they are used for impact assessment studies 

(Christensen et al., 2008). 

2.11 CLIMATE CHANGE IMPACT ON DROUGHT  

Drought is an extreme climate event that, as it develops slowly, is dangerous in 

nature (Mishra and Singh, 2010).  It can have significant implications as it increases in 

intensity and duration gradually.  Drought has numerous socio-economic and 

environmental impacts including increased risk of wild fire, water scarcity, crop and 

livestock loss, high food price, migration, and indirect health effects.  Various forms of 
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droughts, including meteorological, agricultural, hydrological and socio-economic 

droughts, are being studied.  However, a lack of a consensus on the concept complicates 

the study of droughts. 

Global climate change affects a variety of drought-related factors. In the future, 

the effect of drought on global warming is likely to intensify (Trenberth et al., 2014;                 

Dai, 2011).  With the rising climate change impacts, the frequency and intensity of 

extreme weather events such as drought is growing drastically and have negative impacts 

on the fragile environment and human society.  Droughts occur naturally, but the 

hydrological processes have typically been accelerated by climate change, making it 

faster and more intense, with many consequences, including an increased risk of      

wildfire.  Variation of sea surface temperature discrepancies may cause global drought                    

(Seager et al., 2008).  In addition, regional climate change may be responsible for 

improving the land-atmosphere feedback processes, such as slow-moving anticyclones 

that change the environment of the region by disrupting the development of synoptic 

weather systems (Trenberth and Shea, 2005).  Land-atmosphere feedback processes 

complicate the situation by increasing atmospheric temperatures and thus increasing 

atmospheric demand for moisture due to the absence of available moisture in these 

regimes, leading to increased drying and heating of the land surface.  Drought is a natural 

hazard and its impacts can only be mitigated by taking prior measures to adapt to climate 

variability. 

2.11.1 Drought Indices 

In order to control hydrological processes, drought indicators and drought indices 

have been developed and are used interchangeably in the drought analysis.  Drought 

indicators are used in a wider context, with overall variables like rainfall, temperature, 

stream flow, reservoir levels, groundwater levels, snow packs and soil moisture levels.  

Drought indices, on the other hand, are single numerical values that affect drought and 

thus have a strong advantage in the quantification of drought characteristics over mere 

raw data (Hayes et al., 2012).  PDSI (Palmer Drought Severity Index) is the oldest and 

most well-known drought index, and the SPI is the most extensively used one for 
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understanding the extent and duration of drought events.  The two most commonly used 

drought indices are explained below. 

2.11.1.1 Standardised Precipitation Index (SPI) 

The SPI (Mckee et al., 1993) is one of the widely used indices to measure 

meteorological drought.  SPI estimation requires only precipitation data that is based on a 

probabilistic approach and is relatively easy to calculate.  The absence of wind speed, 

temperature, PET and soil moisture data as input parameters, however, is a major 

constraint on the generation of accurate drought information.  Positive SPI values 

indicate greater than median precipitation, and negative values indicate less than median 

precipitation. 

2.11.1.2 Reconnaissance Drought Index (RDI) 

 An improved index over the SPI is RDI (Tsakiris et al., 2007) and requires PET 

as one of the key variables.  However, PET evaluates the atmospheric water demands, but 

does not generally relate to evapotranspiration since it also needs to evaluate the 

availability of water.  RDI has been used to monitor drought and analyse the effects of 

climate change on water resources (Tigkas et al., 2013).  RDI is estimated as the ratio 

between accumulated precipitation and PET over a given time period.  However, in terms 

of temperature change, the RDI lacks the ability to effectively capture drought variability.  

Wet periods are indicated by positive RDI values, while dry periods are indicated by 

negative values when compared to normal conditions in the region. When RDI values 

become extremely negative, the severity of drought events increases. 
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CHAPTER III 

MATERIALS AND METHODS 

This chapter details the materials used, including data collection and analysis, the 

software used, and the methodology adopted to achieve the research objectives.  The 

description of the study area including location, physiography, climate, etc., is also 

covered.  Based on the review, the SWAT model was found to be well suited to both 

climate change impact studies and study of conservation practices and hence the model 

was used for the study.  The methodologies used to get the climate data and the 

procedures for setting up the model are also detailed. 

3.1 DESCRIPTION OF THE STUDY AREA 

3.1.1 Location of the watershed 

Thuthapuzha, a sixth-order subbasin, covers an area of 905 km².  It lies between 

latitude 10°50'N to 11°15'N, and longitude 76°05' to 76°40' E.  Of the total area, 75% is 

in the Palakkad district and 25% is in the Malappuram district.  Thuthapuzha is 

approximately 63 km long with four tributaries, including Nellipuzha, Kanjirapuzha, 

Karimbuzha and Kunthipuzha (Unnikrishnan Warrier and Manjula, 2014).  Thuthapuzha 

watershed is located in the north-eastern part of the Bharathapuzha River and is the main 

tributary that supplies water to Bharathapuzha, particularly during the summer.  The 

annual average discharge of Thuthapuzha sub basin is about 1750 MCM (CWC, 2012).  

Other than the reservoir built across Kanjirapuzha, which serves as a source of water for 

irrigation, there are no other major structures in the watershed.  In the north-east corner of 

the subbasin, the Silent Valley Reserve Forest is situated.  The location map of study area 

is shown in Figure 3.1. 

3.1.2 Physiography 

Physiographically, the land of Kerala is divided into three natural regions,   

namely lowlands, midlands, and highlands.  The study area lies within the midland                    
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(7.5–75 m above MSL) and highland (> 75 m above MSL) regions of Kerala and 

experiences a humid tropical climate.  The elevation of the study area ranges from 20 

meters above sea level in the western side of the basin to 2308 meters above sea level in 

the northern side of the Silent Valley Reserve Forest.  A number of small, cultivated 

watersheds characterise the midland belt with laterite soil.  The highland region is 

characterised by crystalline rocks.  The reserve forest in the study area falls within the 

highland region.  In a watershed, general land use differs as per local physiography. The 

main crops in the midlands are rice, banana, tapioca, seasonal vegetables and coconut, 

while rubber plantations and coconut grooves dominate in the high land region and some 

of the midland region. 

3.1.3 Climate 

The average annual precipitation in the Thuthapuzha subbasin is 3830 mm 

(Manjula and Unnikrishnan Warrier, 2019).  This is greater than the average             

annual precipitation of the whole Bharathapuzha River Basin which is about 1822 mm             

(Raj and Azeez, 2012) and the average annual precipitation of Kerala state (2817 mm) 

(Krishnakumar et al., 2009).  The area also has two distinct monsoons, like the other 

parts of Kerala, namely the south-west (June-September) and the north-east (October-

December) monsoon.  The south west monsoon contributes for around 65 percent of the 

annual precipitation, the north east monsoon and the summer showers contribute to the 

remaining total annual rainfall in the subbasin.  There are wide spatial variations in 

precipitation ranging from 2020 mm to over 5000 mm / year, with heavy precipitation in 

the direction of the Silent Valley Reserve Forest (Manjula and Unnikrishnan Warrier, 

2019).  The average temperature in the area is 27.3 °C (Tejaswini and Sathian, 2018).  

Variations in general precipitation (Raj and Azeez, 2009) and surface temperature in the 

region have been observed over the last few years.  In recent years, severe water scarcity 

and drought conditions have also been reported in the river basin. 
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Fig. 3.1 Location map of study area 
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3.2 MATERIALS USED 

3.2.1 Input data for SWAT model setup 

3.2.1.1 Digital Elevation Model (DEM)  

Digital Elevation Models (DEM) is a gridded digital terrain representation, with 

each pixel value corresponding to an elevation above a datum.  DEM of the study area 

was taken from NASA SRTM (Shuttle Radar Topography Mission) Version 3.0 Global 1 

arc second (about 30 meters) resolution dataset (SRTMGL1).  This is the third release in 

the series that provides access to various NASA SRTM data that coincides                          

with areas released by the USGS (US Geological Survey) and was downloaded via the 

USGS Earth Explorer with additional login to the EARTHDATA website 

(https:/urs.earthdata.nasa.gov).  To setup the SWAT model, the DEM in the projected 

coordinate system WGS_1984_UTM_Zone_43N was used. Slope map of the study area 

has been obtained from DEM in ArcSWAT. 

3.2.1.2 Land use map 

Land use map of Thuthapuzha was prepared through supervised classification 

using the 2008 image data of Landsat 4-5 TM (Thematic Mapper).  The areal imagery 

was downloaded from the USGS Earth Explorer and the supervised classification was 

carried out using ERDAS IMAGINE 2014 developed by Intergraph, USA.  Landsat 4-5 

TM image data files are made up of seven spectral bands.  The resolution for bands 1 to 7 

is 30 meters.   Electromagnetic spectral bands 3, 2 and 1 have been used to prepare the 

imagery for classification.  The supervised classification is based on the concept that “the 

user can select a sample of pixels in an image that is representative of a specific class and 

then direct the image processing software to use these training sites as references for the 

classification of all other pixels in the image”.  The pixels have been analysed by means 

of Google Earth, aerial photos, ground truthing, previous literature, etc.  The classified 

image along with the lookup table, including the information of each class, was entered 

as an input into the SWAT model. 
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3.2.1.3 Soil map 

The soil properties for the basin are one of the main inputs required by the model.  

They have a significant role to play in determining the movement of water and air within 

the HRU.  The soil map and attribute information on the soil properties were collected 

from the Soil Survey and Soil Conservation Directorate of Kerala state.  The soil map 

was digitised and converted into the raster format in ArcGIS 10.4 for input into the 

SWAT model.  In addition, the lookup table, including the information for each class, 

was also given as input along with the soil map. 

3.2.1.4 Meteorological data 

Meteorological data include precipitation, minimum and maximum temperature, 

wind speed, relative humidity and solar radiation on a daily basis.  Historical 

precipitation data for 28 years (1989-2017) were collected from RARS (Regional 

Agricultural Research Station), Pattambi and IMD (India Meteorological Department), 

Mannarkkad station.  The observed temperature data for the same period were obtained 

from RARS, Pattambi and Pulamanthole gauging station of Central Water Commission 

(CWC).  Other meteorological data, including solar radiation, relative humidity and 

sunshine hours, were collected from RARS, Pattambi.  Sunshine hours were then 

converted into solar radiation for further use in SWAT model. The monthly average of all 

the meteorological data collected are given from Appendix I to X. 

3.2.1.5 River discharge data 

River discharge data (daily basis) were collected from the Central Water 

Commission (CWC) at the outlet of the Pulamanthole gauging site (1989–2017).  The 

catchment area of the Pulamanthole gauging station (10° 53' 50" N, 76° 11' 50" E) is    

822 km².  SWAT model calibration and validation was performed using the discharge 

data obtained from CWC.  The location of meteorological stations and river gauge station 

is shown in Figure 3.2. 
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Fig. 3.2 Location map of meteorological and rain gauge stations of Thuthapuzha 

3.2.2 Climate change data and analysis 

One of the main input sets for modelling future watershed conditions in SWAT is 

data on climate change.  Major climatic parameters, such as precipitation, maximum 

temperature and minimum temperature, are changed in order to achieve future climatic 

conditions.  The most basic method of generating climate projections is based on a 

climate model concept and scenarios for future emissions of greenhouse gases.  Global 

Climate Models (GCMs) are tools for conducting climate change experiments that can be 

used to construct climate change scenarios.  GCMs can only be used on a rather coarse 

horizontal and vertical resolution.  This is a source of error in simulating regional climate.  

In addition, the lack of regional information makes the GCM output unsuitable for a 

number of impact studies requiring regional information.  The downscaling process in 

which a high-resolution (usually 10-50 km) RCM is nested into a GCM is a more 

systematic approach to address this scale discrepancy. This can significantly improve 

regional climate simulations and projections due to higher resolution and a more 

complete representation of physical processes in RCMs (Maraun et al., 2010).  However, 

there are problems related to the nesting approach of the RCMs and the choice of 

integration domains.  In many assessment studies there is a further need for even better 



42 
 

resolution than that provided by the RCMs.  It may also be desirable to remove 

systematic errors in the RCM / GCM output. 

The Earth System Grid Federation (ESGF) portal provides access to a wide 

variety of data sets, including the Coupled Model Intercomparison Project Phase 5 

(CMIP5) model data that serves as the basis for IPCC AR5.  ESGF also have provision 

for downloading numerous CORDEX RCM simulations produced by a number of 

modelling groups around the globe, similar to the CMIP5.  CORDEX simulation over the 

South Asian domain (CORDEX-SA) was available in the Centre for Climate Change 

Research Indian Institute of Tropical Meteorology regional data portal. 

Moreover, it is not yet clear that if dynamically downscaled precipitation from 

regional climate models improves the ability of GCMs to simulate extreme precipitation 

events (Racherla et al., 2012; Laprise, 2014).  In general, there was a lack of thorough 

evaluation for GCMs and RCMs in simulating the observed characteristics of daily 

precipitation extremes across the Indian region and specifically Kerala.  This is also true 

in the case of temperature simulation.  In addition, it was found from the literature review 

that the GFDL-CM3 model provides better simulation of the Indian condition.  The 

GFDL-CM3 model was developed by the National Oceanic and Atmospheric 

Administration (NOAA) Geophysical Fluid Dynamics Laboratory.  Climate change data 

of the GFDL-CM3 model (precipitation, maximum temperature and minimum 

temperature) was downloaded from the ESGF-CMIP5 dataset and the CORDEX-SA FTP 

server.  In the CMIP5 download, all four RCP scenarios, namely RCP2.6, RCP4.5, 

RCP6.0 and RCP8.5, were available for the period 2006-2100, while in the CORDEX-SA 

GFDL-CM3 download data, only RCP4.5 and RCP8.5 were available for the period 

2006-2070.  For historical data comparison, the 1989-2005 data was downloaded from 

both datasets.  These data were used to evaluate the GFDL-CM3 GCM data from CMIP5 

and the RCM data from the CORDEX-SA. 
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3.2.2.1 Bias correction 

Although significant progress has been made in recent years, the output of both 

GCMs and RCMs continues to be affected by bias to an extent that prevents their direct 

use, particularly in climate change impact studies.  Bias correction, i.e. “the correction of 

model output for its subsequent application in climate change impact studies”, has now 

become standard practice to address this issue.  Prior to the evaluation of both CMIP5 

and CORDEX-SA data, bias correction was performed to determine which bias 

correction method is best suited for further analysis separately for precipitation, 

maximum temperature and minimum temperature.  Statistical parameters such as 

standard deviation, correlation coefficient and coefficient of variation were used to select 

the best method.  Several bias correction methods for precipitation and temperature data 

are available separately.  There are many tools and many approaches in literature for bias 

correction. Various software are now available to correct climate data for bias.  The 

CMhyd tool was used in this study to extract and bias correct data from the climate 

model.  The tool compares the output of the raw climate model with the data observed, 

calculates the difference between the data observed and the simulated climate model, and 

applies methods of statistical bias correction to correct the output of the historical and 

future climate model.  In order to correct the bias of the future climate model simulation, 

bias correction algorithms derived from the observed data and the historical climate 

model simulation were used.  The CMhyd is designed to prepare simulated climate data 

for climate change impact studies using the SWAT model.  The tool provides several 

methods of bias correction, including linear scaling, non-linear scaling and distribution 

mapping.  Bias correction methods used for the study are shown in   Table 3.1. 
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Table 3.1 Bias correction methods used for precipitation and temperature 

Bias correction for precipitation Bias correction for temperature 

Linear Scaling (LS) Linear Scaling (LS) 

Local Intensity Scaling (LIS) Variance Scaling (VS) 

Delta change correction (DCC) Delta change correction (DCC) 

Distribution mapping (DM) Distribution mapping (DM) 

Power transformation (PT)  

3.2.2.2 Comparison of CMIP5 and CORDEX-SA dataset 

The comparison of model output from CMIP5 and CORDEX-SA was made after 

the bias correction.  Historical data from 1989 to 2005 was used for comparison purposes.  

These historical data was compared with the observed data and the model with a high 

correlation with the observed data was selected using statistical parameters (standard 

deviation, correlation coefficient and coefficient of variation) for further analysis.  

3.2.3 Details of conservation practices in the watershed 

Details of the reservoirs and conservation structures in the study area are needed 

to study the impact of conservation practices on watershed hydrology.  The necessary 

details include area, volume, year of construction of the structure, etc.  Several 

conservation structures were present in the study area such as check dam, vented cross 

bars, brushwood dam etc.  The Kanjirapuzha dam is the only reservoir in the 

Thuthapuzha subbasin.  The Kanjirapuzha reservoir is built across the Kanjirapuzha 

River in Mannarkkad, Palakkad District.  The nearest town is Palakkad, which is 46 km 

from the dam site.  The reservoir has latitude of 10°59’8.515”N and a longitude of 

76°32’18.955”E.  Details of the reservoir have been collected from previous literature 

and the annual report on the Kanjirapuzha Irrigation Project.  Details of the conservation 

practices have been collected from the Regional Office, Kerala State Land Use Board, 
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Thrissur.  Details were collected as five subwatersheds in the study area, namely 

Thuthapuzha, Nellipuzha, Kunthipuzha, Karimpuzha and Kanjirapuzha. 

3.2.4 Softwares used 

The study was carried out using different softwares and models to analyse the 

input data and to achieve the research objectives.  The description of the models and 

software used for the study is given below. 

3.2.4.1 ArcGIS 10.4 

ArcGIS is a geographic information system developed by the Environmental 

Systems Research Institute (ESRI) to work with maps and geographic information and 

was released in New York on 27 December 1999.  ArcGIS Server is a complete, 

integrated GIS server, which supports spatial data management, mapping and spatial 

analysis across distributed systems. ArcGIS consists of four key components including a 

geographic information model for the modelling of real-world aspects, components for 

the storage and management of geographic information in files and databases, a set of 

applications for creating, editing, mapping, manipulating, analysing and interpreting 

geographic informations; and a collection of web services that provides content and 

capabilities.  In general, the ArcGIS Desktop software module includes ArcMap, 

ArcCatalog, ArcToolbox and ArcGlobe.  ArcMap is an application that allows users to 

create and modify maps and analyse (2D) spatial data (Fig. 3.3).  There are three other 

modules within ArcMap; ArcView level install for basic level application; ArcEditor for 

data editing and ArcInfo for advanced editing and analysis features.  The ArcCatalog 

module is a tool for viewing and managing spatial data files (windows explorer 

analogue).  ArcToolbox contains a set of tools and functions used for converting data 

formats, managing map projections, analysing and modifying data.  The ArcGlobe 

application is designed for displaying large, global 3D datasets. 
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Fig. 3.3 ArcMap interface showing ArcSWAT menu 

The latest version of ArcGIS is 10.8, which was released in 2020 and ArcGIS 

10.4, released in 2016, was used for the study.  In this research, ArcGIS 10.4 is used to 

make a shape file for the study area, to clip input maps, to set projections, raster 

conversions, to digitise soil maps, and to prepare different layout maps for results. 

3.2.4.2 ERDAS IMAGINE 2014 

A number of image processing software is available in both paid and free source 

categories. ERDAS Imagine is an image processing software that was previously 

supported by Leica Geosystems Inc. but is now being provided by Hexagon Geospatial. It 

is raster-based software specifically designed to extract image information. Import, view, 

modify and analyse both raster and vector data sets are built-in software functions. This 

software can handle an unlimited number of image data bands within a single file. These 

bands are often treated as layers in the ERDAS IMAGINE software. Additional layers 

can be created and added to the existing image file. It enables users to import a wide 

range of remotely sensed images from satellite and aerial platforms. 
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Fig. 3.4 ERDAS IMAGINE 2014 interface 

Image processing and supervised image classification helps in extracting data 

from imagery.  In this study, the ERDAS IMAGINE 2014 software was used for image 

processing.  The layers were stacked and subset to delineate the catchment area for 

classification.  Layer stacking option of this software was used to convert three bands;      

3, 2, 1 of Landsat 4-5 TM to a single layer.  From the layer file, land use map of the study 

area was classified.  To geocode the imported image, the UTM Zone 30N Coordinate on 

WGS 84 was used.  Interface of ERDAS IMAGINE 2014 is shown in Figure 3.4. 

3.2.4.3 SWAT-CUP 

SWAT-CUP (Calibration and Uncertainty Programs) is an automated calibration 

tool for SWAT model developed by Eawag, a Switzerland-based aquatic research 

institute (Abbaspour, 2015).  The SWAT-CUP is a public domain program using a 

generic interface. Within the SWAT-CUP it is possible to perform different sensitivity 

analysis, calibration, validation, and uncertainty analysis.  There are five different 

uncertainty algorithms (SUFI-2, MCMC, PSO, GLUE and ParaSol) available in the 

SWAT-CUP software (Abbaspour, 2015).  The SWAT-CUP systematically modifies the 

uncertain model parameters and runs the model.  The outputs required are then extracted 

and compared with the observed data.  For this study, version 5.2.1 of SWAT-CUP 2019 

was used (Fig. 3.5). 

SUFI-2 (Sequential Uncertainty Fitting) algorithm was chosen to calibrate the 

SWAT model for this research work.  SUFI-2 is a semi-automatic program in which the 
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user manually performs some of the steps during calibration.  For this purpose, the user 

must be familiar with the SWAT model parameters and also the hydrological features of 

the watershed being modelled.  SUFI-2 contains all uncertainties, such as input data     

(e.g. precipitation), the conceptual model, the parameters and the observed data.  To 

generate an independent set of parameters, SUFI-2 uses Latin hypercube sampling         

(Abbaspour et al., 2007).  The uncertainty of the parameter is described by a multivariate 

uniform distribution in the hypercube parameter.  When all types of uncertainty are 

included in the measured variables (e.g. discharge), the 95PPU (95 percent prediction 

uncertainty) produced by the parameter uncertainty defines all uncertainties.  The 95PPU 

accounts for 2.5 and 97.5 percent of the cumulative distribution of the output variable 

derived from the Latin hypercube sampling (Abbaspour et al., 2007). 

 

 

 

 

 

 

 

Fig. 3.5 SWAT-CUP interface 

3.2.4.4 CMhyd 

CMhyd is a tool that can be used to extract and correct the data generated from 

global and regional climate models.  In order to reduce the mismatch between simulated 

and observed climate parameters on a daily time step, bias correction methods are used so 

that hydrological simulations driven by the bias corrected climate data coincide 

reasonably well with simulations using observed climate data.  Climate Model for 

Hydrological Modelling (CMhyd) was developed by Rathjens et al. (2016) to perform 

bias correction of precipitation and temperature data from several climate models.  
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CMhyd tool includes eight bias correction methods, including power transformation, 

linear scaling, local intensity scaling, delta change, distribution mapping and variance 

scaling.  CMhyd was developed to provide projected climate data that could be 

considered indicative of the gauge locations used in the SWAT model setup.  For each 

gauge locations, the climate model data should therefore be extracted and bias corrected. 

The CMhyd software interface is shown in Figure 3.6. 

 

 

 

 

 

 

 

 

Fig. 3.6 CMhyd interface 

 

This research used the CMhyd tool for the extraction and correction of climatic 

parameters derived from GCMs and RCMs.  CMhyd was written in Python 2.7 using 

several Python packages mainly NetCDF, SciPy (Oliphant, 2007; Millman and Aivazis, 

2011), PyQt4 and the NumPy (Van der Walt et al., 2011) application framework.  To 

adjust the output of the climate model, bias correction methods use a transformation 

function.  The basic method was to identify biases between simulated and observed 

historical climate parameters in order to develop a bias correction algorithm to correct 

simulated historical climate parameters.  The ASCII format is used by CMhyd for the 

data observed as well as for the corrected output bias. The ASCII format is also used by 

the ArcSWAT Interface which promotes the use of projected climate data in the SWAT 

model (Winchell et al., 2010).  The tool was checked using both CORDEX and CMIP 

data.  For simulated climate data, CMhyd supports two data formats; netCDF (*.nc)     

files and ASCII input.  Time series of climate model are usually given in a netCDF       
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(Network Common Data Form) format.  CMhyd uses the information in the netCDF file 

to locate the climate model grid cells that overlay the gauge positions and convert 

temperature and precipitation data to degrees Celsius and millimetres, respectively.  

CMhyd eventually uses netCDF data for extracting the time series of the related grid 

cells.  For each gauge location files, the Plot tab in the software can be used to plot an 

annual and monthly time series and a monthly summary of the outputs generated. 

3.2.4.5 DrinC 

DrinC (Drought Indices Calculator) is a software package designed to provide a 

basic but adaptable interface for the computation of drought indices.  The DrinC software 

package was developed by the Centre for the Assessment of Natural Hazards and 

Proactive Planning and the Laboratory for the Management of Reclamation Works and 

Water Resources of the National Technical University of Athens (Fig. 3.7).  Maximum 

possible application for different types of drought (hydrological, meteorological, 

agricultural) and different locations has been the main objective in its design.  DrinC 

software was developed with the aim of providing a simple interface for calculating four 

different drought indices including the Standardised Precipitation Index (SPI),              

the Reconnaissance Drought Index (RDI), the Streamflow Drought Index (SDI),           

and the Rainfall Deciles (RD).  In addition, DrinC also contains a module for 

temperature-based methods (Blaney-Criddle, Hargreaves and Thornthwaite) to estimate 

potential evapotranspiration (PET) that can be used to calculate RDI.  Using a        

window-based interface, the user can choose from a number of options that may be best 

suited to the specific requirements of each study. 

Meteorological drought can be analysed using RDI, SPI and RD indices which 

require precipitation as the main component for calculation (additionally PET is required 

for RDI calculation).  Reconnaissance Drought Index can also be used to analyse 

agricultural droughts, as the water balance can be adequately described and is especially 

useful when selecting reference periods related to crop growth (Tsakiris et al., 2010).  

SDI, on the other hand, refers to the hydrological drought and uses the streamflow as a 
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major component of the calculation.  In DrinC, the hydrological year (October-

September) is the main reference base, so the default calculation period starts in October 

and the main time steps are yearly, monthly, three months, and six months. However, 

starting months (e.g. January) or other time periods (e.g. 5 months) can be specified.  

This adaptability may be useful for a wide range of real-world applications. Two 

distributions are available in the drought index analysis of CMhyd software viz., gamma 

and log-normal distribution. 

 

 

 

 

 

 

 

 

Fig. 3.7 DrinC software interface 

In this study, two indicators of drought intensity analysis, SPI and RDI, were used 

for both historical and future time periods using climate model bias corrected data for 

different RCP scenarios. 

3.2.4.6 SWAT  

The SWAT (Soil and Water Assessment Tool) model is a public domain software 

developed jointly by Texas A&M AgriLife Research, part of the Texas A&M University 

System and the USDA Agricultural Research Service.  Though SWAT was developed in 

the early 1990s, it has undergone extensive evaluation and its functions have been 

continuously improved.  The Green and Amp infiltration method and the improved 

weather generator are important to note, enabling the generation of data for daily relative 

humidity, solar radiation and wind speed in SWAT2000 (Neitsch et al., 2011).  SWAT is 

a spatially-distributed, physically-based watershed model capable of simulating the 
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impact of land, topography and vegetation on water movements on and near the soil 

surface (Arnold, 2010). SWAT is free software and is coupled to the GIS platform via 

ArcSWAT interface that facilitates data processing and modelling easier.  In order to 

simulate flows and direct subbasin routing, SWAT requires information about land use, 

soil, and elevation.  SWAT2012 (latest version) (Neitsch et al., 2011) was used for this 

research and the ArcSWAT 2012 extension of GIS was used as an interface for SWAT 

modelling.  The SWAT model software is freely available for download from the SWAT 

website (swat.tamu.edu). 

Main components of SWAT are weather, hydrology, soil properties, plant  

growth, nutrients, pesticides, bacteria and land management (Arnold et al., 2012).  The 

watershed is divided into different subwatersheds, depending upon the topography.                      

Each subwatershed has been further subdivided into Hydrological Response Units 

(HRUs) which are combinations of homogeneous land use, soil and slope (Arnold et al., 

2012).  Many inputs, including DEM, soil type, land use and slope, affect the size of the 

HRU.  The HRU distribution is defined by user-defined thresholds in the current SWAT 

model.  Although the size of the HRU varies depending on the requirements of the user, 

the normal area of the HRU in the SWAT varies from approximately 50 to 500 ha. 

Hydrology can be divided into two main components in the SWAT model, 

including the land phase and the routing phase (Neitsch et al., 2011).  The land phase 

controls the amount of water, sediment and nutrient loads to the main channel in each 

subbasin, whereas the flow of water, sediment, etc. to the outlet through the watershed 

channel network is described by the routing phase (Neitsch et al., 2011).  Based on the 

equation of the water balance, SWAT calculates the land phase hydrological cycle 

(Neitsch et al., 2011) as follows: 

∆SW = P – (QSURF + ET + WSEEP + QGW)                  (1) 

Where, ∆SW is the change in soil water content, P is the precipitation, QSURF is 

the surface runoff out of the watershed, ET is the evapotranspiration, WSEEP is the 

percolation from the soil profile and QGW represent the transmission losses from the 
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streams.  All parameters are expressed in (mm) over the watershed area.  A schematic 

representation of the hydrologic cycle is shown in Figure 3.8. 

 

Fig. 3.8 Schematic representation of the hydrologic cycle in SWAT  

(Neitsch et al., 2011) 

3.2.4.7 Additional software used 

In addition to all of the above mentioned software, MS Excel was used for the 

model performance analysis and all graph preparations for results.   

3.3 REASERCH METHODOLOGY  

3.3.1 SWAT Model setup 

SWAT hydrological model was chosen for this project.  The development of the 

SWAT model is the basis for achieving the remaining research objective.  A toolbar has 

been added to ArcGIS to develop the SWAT model once the ArcSWAT programme has 

been downloaded, displaying the main procedures for the modelling process.  These 

include SWAT Project Setup, Watershed Delineation, HRU Analysis, Write Input Tables, 

Edit SWAT Input and SWAT Simulation process.  After each step is completed, the 

following step in the model will be enabled. After the model is run, the sensitivity 

analysis, calibration, validation and performance of the model need to be done to develop 

the model for the study area. 
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3.3.1.1 SWAT Project Setup  

To start with, the "New SWAT Project" button in the SWAT Project Setup menu 

was selected.  The "Project Setup" menu will open.  The input data’s for SWAT model 

setup described in this chapter were placed in a particular folder on the computer.  In the 

"Project Setup" menu, the "Project Directory" button was pressed, and the input data 

folder on the computer was chosen.  This folder will be the only option that the user 

selects to allow ArcSWAT software to access all required input data during the setup 

process.  The toolbar is shown in Fig. 3.9. 

3.3.1.2 Watershed delineation 

 The next step to be followed in the ArcSWAT program was the watershed 

delineation (Fig. 3.10).  The first step was to load the DEM file and press the "DEM 

projection setup" button.  It was then necessary to define the streams in the watershed.  

The program provided two options for defining streams; a predefined stream and a 

watershed option that can be used if the stream location in the watershed is known, and a 

DEM-based stream definition option which can be used if the exact stream location in the 

watershed is not known.  Based on the elevation values of individual cells in the DEM, 

the model estimated flow paths.  The selected option in this study was DEM-based 

stream definition.  The program creates outlets in the subbasins which could however, be 

modified.  This is useful if a streamflow gauge has a known location within the 

catchment area.  During the model setup process, by pressing the 'Add' button under the 

'Outlet and Inlet Definition' option in the watershed delineation submenu, the position of 

the Pulamanthole streamflow gauging station was added manually.  A whole watershed 

outlet was selected to define the overall area being modelled. The watershed was then 

successfully delineated.  SWAT model finally generates a report explaining the 

distribution of discrete land elevations and summary statistics in each subwatersheds and 

watersheds.  There is an option to add the reservoir component of the watershed within 

this watershed delineation menu. 
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Fig. 3.9 Project setup menu in SWAT 

 

Fig. 3.10 Watershed delineation sub menu in ArcSWAT 

3.2.1.3. Soil, land use, slope definition and overlay 

The definition and overlaying process divides subbasins into areas, referred to as 

hydrological response units (HRUs), of similar soil, land use and slope.  This is where the 

user begins making options on the basis of information about their study area.  The 

overlaying process required land use and soil data.  There is an option that enables users 

to add new classes to the SWAT database manually.  Thus, users can add classes that are 

specific to their study area.  For land use and soil data, a lookup table is also required to 

specify the code of each category to be modelled.  After entering the maps and the lookup 

table, each class has been reclassified to SWAT defined classes.  The definition and 
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reclassification of slope classes is the final step before the overlay operation to determine 

the hydrological response units (HRUs).  Slope map is defined using DEM in the SWAT 

model.  The SWAT model generates a report detailing the distribution of land use, soil 

and slope classes in the watershed after completion of the overlay process.  Fig. 3.11 

shows the overlay menu. 

 

Fig. 3.11 Overlay menu in ArcSWAT 

3.2.1.4. Hydrological Response Unit (HRU) definition 

The HRUs must be determined after importing and overlaying the land use, soil 

and slope data layers into the model.  HRU refers to homogeneous areas that constitute 

unique soil, land use and slope combinations.  Each subwatershed can be assigned a 

single HRU or multiple HRUs.  The model will determine the HRU by the dominant 

category of land use, soil type and slope class if a single HRU is selected for each 

subwatershed.  The user-specified sensitivity for land use, soil and slope data determines 

multiple HRUs.  Multiple HRUs option was selected for this study.  The threshold value 

used for each class was 10 percent.  This refers to “the percentage of subbasin areas with 

a unique land use, soil or slope class under which that class is considered to be negligible 

and excluded from the analysis”.  HRU definition menu is shown in Fig. 3.12. 



57 
 

3.2.1.5. Weather data definition 

Loading the weather data to the model was the next step.  The first tab was the 

data tab of the weather generator.  This is an important part of the process if there are 

gaps in the weather data used.  Rather than any weather generator options, the WGEN 

user option was chosen for this research.  In order to add weather data of the study area, 

the following five tabs (Fig. 3.13) were used.  This was accomplished by successively 

specifying the precipitation, temperature, relative humidity, solar radiation and wind 

speed for the Thuthapuzha watershed.  For inputting the data, the "Location Table" of 

each gauge is required. 

 

Fig. 3.12 HRU Definition menu in ArcSWAT 

 

Fig. 3.13 Weather data definition menu in ArcSWAT 
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3.2.1.6. Write SWAT input tables 

Database files constructed by the ArcSWAT program contain informations 

required to generate the default input files for running the model (Arnold et al., 1998).  

The "Select All" button was pressed, followed by the "Create Tables" button to create and 

populate the SWAT model default input tables.  The tick in the box and the "completed" 

next to the name of each SWAT table were the indication that the process was completed.  

Write SWAT input tables menu in SWAT model is shown in Fig. 3.14. 

 

Fig. 3.14 Write SWAT input tables menu in SWAT model 

3.2.1.7. Running the SWAT model 

There was an 'Edit SWAT input' option to edit the ArcSWAT input before the 

SWAT model run option, and this tab is useful if the user wishes to use the model to 

study future climate change or land use scenarios.  The input for this project has been 

modified for the impact assessment of conservation practices.  The simulation period 

needed to be specified before the model run.  For this study, the simulation period was 

from 01/01/1989 to 31/12/2009 for the calibration period and 01/01/2010 to 31/12/2017 

for the validation period with daily time intervals.  The NYSKIP specified a three-year 

warm-up period.  The "Setup SWAT Run" button was started.  After the model had 

completed the SWAT model setup, the "Run SWAT" button was enabled.  The model 
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was individually executed for each year and notified when the specified period was 

successfully modelled.  The output files to be imported into the database were selected 

and imported as output files, and the simulation with a specific name is saved.  Using the 

SWAT check option, users can check whether there are any aspects of the results that 

cause a problem.  Setup menu for the process of running SWAT model in ArcSWAT is 

shown in Fig. 3.15. 

 

Fig. 3.15 Setup menu for the process of running SWAT model in ArcSWAT 

3.2.1.8 Sensitivity Analysis and Calibration 

The first step in the process of calibration and validation is the sensitivity 

analysis. Sensitivity analysis can be described as the process of determining the rate of 

change in the parameters of the model output relative to changes in the parameters of the 

model input.  There are two types of sensitivity analysis; one-at-a-time and global 

analysis.  This study carried out a global sensitivity analysis using the Sequential 

Uncertainty Fitting (SUFI-2) algorithm.  SUFI-2 is a program connected to SWAT in the 

Calibration Uncertainty Programs known as SWAT- CUP (Abbaspour, 2008).  The 

selected 13 parameters were ranked using Global sensitivity analysis tool by           

varying them over defined range of values and comparing those parameters with output 

discharge variations.  A sensitivity measure was given by the t-stat value while the         

p-value calculated the significance of the sensitivity.  SUFI-2 evaluates to what degree 

uncertainties are compensated for, and provides a range of outputs.  In SUFI-2, the 
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uncertainty parameter accounts for all sources of uncertainty. The SUFI-2 algorithm used 

500 simulations with a 3-year warm-up period from 1989 to 2009 using 13 parameters.  

After iteration, each parameter was adjusted based on the parameter ranges indicated by 

SUFI-2.  For SWAT model calibration, a total of three model iterations were used. The 

accuracy of the calibration was assessed on the basis of the proximity of the p-factor to 

100 percent and the prediction uncertainty on the basis of the proximity of the r-factor     

to 1. The Nash Sutcliffe Efficiency Value (NSE) and the coefficient of determination (R²) 

were also used as fitness measurements between observed simulated discharges generated 

in the SWAT-CUP.  After calibration in the SWAT-CUP, the parameters needed to be 

changed in the SWAT model were adjusted and the calibrated model was run. 

3.2.1.9 Model Validation  

Once the model was calibrated, model validation was performed via the      

SWAT-CUP interface. Validation of the model was carried out by running the model 

with calibrated parameters without any further modification and comparing the simulated 

and observed daily discharge values. The SWAT model has been run from 2010 to 2017 

without any further adjustment of the calibrated parameters. The p-factor and r-factor 

were used to measure the prediction uncertainty and NSE, R² and PBIAS were used to 

evaluate the model performance. 

3.2.1.10 Model performance 

Commonly used statistical measure for hydrological modelling is the NSE value 

which can be used as a measure of goodness of fit.  Generally, when assessing the 

performance of the hydrological model, NSE and R² are evaluated together (Zhou et al., 

2012).  In this research, in addition to NSE and R² efficiency, percent bias (PBIAS) was 

also used to evaluate model performance.  The general performance rating for the 

statistical measures are given in Table 3.2. 

3.2.1.10.1 Nash-Sutcliffe efficiency (NSE)  

It is generally defined as “the absolute difference between observed and predicted, 

which is then normalized by the variance of the observed discharge in order to eliminate 
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any bias”.  The range lies between 1 and -∞, with 1 being the perfect fit (Krause et al., 

2005). 

NSE = 1- 
∑    –      

   

∑    –    
   

 

Where, Oᵢ is the observed discharge, Pᵢ is the Predicted discharge, Õ is the Mean 

of observed discharge and n is the number of simulations.  The main drawback of the 

Nash-Sutcliffe efficiency is that the differences between the observed and the predicted 

values are computed as squared values.  Therefore, in a time series, larger values are 

strongly overestimated whereas lower values are neglected (Legates and McCabe, 1999). 

3.2.1.10.2 Coefficient of Determination (R²) 

Coefficient of Determination (R²) can be expressed as “the squared ratio between 

the covariance and the multiplied standard deviations of the observed and predicted 

values”.  The range of R² lies between 0 and 1.   A zero value means absolutely no 

correlation; while a value of one means that the distribution of the prediction is the same 

as the observation.  Since only the linear relationship between the variables is measured, 

the coefficient of determination has many drawbacks.  It is calculated as: 

R² = (
(∑ (  – )      

   )

√∑    –    
   √(∑       

   ) 

) ² 

Where, P is the mean of simulated discharge. 

3.2.1.10.3 Root Mean Square Error (RMSE) 

RMSE indicates a perfect match between the observed and the predicted values 

when it is equal to zero, with increasing RMSE values indicating an increasingly poor 

match.  Singh et al. (2004) stated that “RMSE values of less than half the standard 

deviation of the measured data could be considered low and will indicate a good model 

prediction”.  It is calculated as: 

RMSE=√
∑           

   

 
 

(2) 

(3) 

(4) 
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3.2.1.10.4 Percent bias (PBIAS) 

It measures the average negative dispersion of the predicted data from the 

observed data with an optimum value of zero percent, which means no deviation.  The 

optimum value for PBIAS is zero, with low magnitude values indicating accurate model 

simulation.  PBIAS positive values denote under estimation bias and negative values 

denote overestimation bias (Gupta et al., 1999).  It is calculated as follows: 

PBIAS = [
∑         

       

∑      
   

] 

Table 3.2 General performance rating of statistical measures 

Performance rating R² NSE PBIAS 

Very good R²>0.85 0.75<NSE<1.0 PBIAS<±10 

Good 
0.75< 

R²<0.85 
0.65<NSE<0.75 ±10<PBIAS<±15 

Satisfactory 
0.6< 

R²<0.75 
0.50<NSE<0.65 ±15<PBIAS<±25 

Unsatisfactory R²<0.60 NSE<0.50 PBIAS>±25 

 

3.3.2 Climate change impact analysis 

3.3.2.1 Climate change impact on wateryield 

Climate change is expected to have an impact on hydrology of a watershed due to 

changes in precipitation, temperature, and evapotranspiration.  The impact of water 

resources on the global water supply may be the most profound and undoubtedly 

important.  Water resources and climate change have been extensively studied and 

reported around the world.  For example, the Intergovernmental Panel on Climate Change 

(IPCC) reviewed and referenced several studies on water resources and climate change 

(5) 
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on a wide range of physiographical conditions, ranging from local to continental scales 

(IPCC, 1996).  Accurate determination of the hydrological effects of climate change will 

help in understanding possible future problems with water resources and result in better 

decision making.  With economic growth and population growth, the conflict between 

water use and water supply will become even more serious issue in the future. 

It is of paramount importance to identify the potential impacts of climate change 

on water resources in order to achieve their proper management and utilisation.  An 

appropriate hydrological model (SWAT) was identified for this purpose and the climate 

model projections were used as inputs in addition to the watershed parameters.  The 

model was initially calibrated and subsequently validated during the period 1989-2010 

using the observed streamflow data at the Pulamanthole gauging station.  The 

temperature and precipitation scenarios for climate change (RCPs) were then projected 

using the GFDL-CM3 model.  The projected climate scenarios were bias corrected and 

then used as input into the SWAT model to calculate water yield during the future period.  

Few studies have focused on climate change impacts on watersheds in humid tropical 

areas even though the use of climate model outputs in a hydrological model is not a new 

concept.  For each climate change scenarios considered, the water yield generated by the 

SWAT model was compared to evaluate the impact of each RCP scenario. 

3.3.2.2 Climate change impact on drought intensity 

Drought is a complex phenomenon that can be characterised primarily by its 

duration, severity and areal extent.  Drought severity is a major element among these 

three dimensions that can be used for drought analysis.  Drought indices are widely used 

in a meaningful way to evaluate the severity of the drought.  Among the various drought 

indices, SPI and RDI have been selected for analysing the climate change impacts on 

drought intensity. 

The SPI is defined as “the number of standard deviations from the mean at which 

an event occurs”.  The long-term record of precipitation for the chosen period of time is 

fitted to a probability distribution for the SPI calculation, which is then converted into a 
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normal distribution so that the mean SPI for the location and desired period is zero 

(McKee et al., 1993).  Positive SPI values indicate greater than median precipitation, and 

negative values indicate less than median precipitation.  Thom (1958) found that the 

gamma distribution fits well with the time series of climatological precipitation.  The 

magnitude of drought is calculated as the positive sum for each month SPI during         

the drought event (Hayes et al., 2007). Drought classification based on SPI value         

(Tigkas and Tsakiris, 2004) is shown in Table 3.3.  The ability of SPI to calculate at 

different time periods allows multiple applications.  The SPI values for 3 months or less 

could be useful for basic drought monitoring, values for 6 months or less for monitoring 

agricultural impacts, and values for 12 months or longer for hydrological impacts, 

depending on the study purpose.  The use of different timescales enables assessment of 

the effects of a precipitation deficit on different components of the water resource 

including groundwater, reservoir storage, soil moisture, streamflow etc. 

Table 3.3 Classification of drought based on SPI values 

SPI values Classification 

2.0 or more Extremely Wet 

1.5 to 1.99 Very Wet 

1.0 to 1.49 Moderately Wet 

-.99 to .99 Near Normal 

-1.0 to -1.49 Moderately Dry 

-1.5 to -1.99 Severely Dry 

-2 or less Extremely Dry 

 

In order to analyse the impact of climate change on drought intensity, the bias 

corrected precipitation, the maximum temperature and the minimum temperature data 

derived from the climate model were given as input into DrinC software and the drought 

indices, namely SPI and RDIst, were calculated.  The number of drought occurrences was 

then analysed to determine the intensity of the drought. For each RCP scenario, PET was 

calculated separately using the Hargreaves method in the software module.  Since both 
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SPI and RDI fit well with the gamma distribution, it was selected for the calculation of 

drought indices.  In order to analyse the long-term effects of drought, the time-scale was 

set at 12 months. 

3.3.3 Conservation practices impact analysis 

For watershed management, it is necessary to quantify the changes in the water 

balance and soil erosion over a long period of time which is a challenging task.  The 

SWAT model was used here to analyse the impact of conservation practices on 

hydrological processes.  Water management from farmland to basin level will need to 

improve in the future, to meet water resource requirements in different sectors.  It is 

therefore essential to analyse the impacts of conservation practices.  The SWAT model 

itself is capable of simulating a number of management practices such as tillage, fertiliser 

application, crop rotation, dams, ponds, etc.  But fewer researchers analysed the impact of 

conservation practices on watersheds using SWAT.  In addition, there is no standard 

procedure to simulate conservation practices to date. 

For this research, the collected details of conservation practices were analysed. 

The three main conservation practices; Vented Cross Bar (VCB), check dam and 

brushwood dam in the study area were selected for further analysis.  The SWAT models 

divide the area of simulation into subwatersheds connected following the river network in 

a cascade structure.  From the literature, it was found that check dams could be modelled 

as ponds in the SWAT model.  Since the conservation practices chosen have a similar 

function as the check dams, all three have been modelled as ponds.  Thus, for each 

subbasin, the storage area and the volume of all three conservation practices were 

summed up and given as a single pond at the outlet of subbasins in which it is located.  

The SWAT model already has the option to simulate the reservoir.  As a result, the 

Kanjirapuzha Dam was modelled as a reservoir.  Following the modelling of ponds and 

reservoirs, the SWAT model was run to simulate the impact of conservation practices on 

stream flow and sediment yield.  In general, the impacts of conservation practices on 

streamflow and sediment yield were evaluated by running the model with and without 

conservation practices and comparing streamflow and sediment yield in both cases.  



Results and Discussion 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The present study was conducted to assess the impact of conservation practices 

and climate change on watershed hydrology.  The bias correction methods, as well as the 

comparison of CMPI5 and CORDEX-SA data, have been detailed in this chapter.  The 

hydrological model SWAT and the climate model GFDL-CM3 were used for the study.  

The research findings are analysed for each objective and discussed under separate 

sections in this chapter. 

4.1 MODEL DEVELOPMENT 

4.1.1 Preparation of data inputs 

The primary datasets required for the SWAT model are DEM, land use map, soil 

map and meteorological data. 

4.1.1.1 Digital Elevation Model (DEM) 

DEM data was used to delineate the watershed boundary corresponding to the 

outlet at the Pulamanthole gauging station in the SWAT model.  NASA SRTM DEM has 

been used with a resolution of 30 m.  The SRTM DEM used for this study is shown in 

Fig. 4.1.  The properties of the DEM are shown in Table 4.1. 

  

Fig. 4.1 Digital Elevation Model of Thuthapuzha watershed 
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Table 4.1 DEM properties 

Metadata parameter Value/Description 

Projection Universal Transverse Mercator (UTM) 

False Northing 0 

False Easting 500000 

Central Meridian 75 

Scale factor 0.996 

Reference Latitude 0 

Geographic coordination system WGS_1984_43 N 

Column/Row count 1636/1381 

Cell size (X/Y)(m/m)  
 

30/30 

 

4.1.1.2 Land use map 

ERDAS IMAGINE 2014 software was used to prepare the Land use map.  Using 

the ArcSWAT project, the classified image was clipped and reprojected.  Land use map 

was projected in WGS_1984_UTM_Zone_43N projection.  Prepared land use was given 

as input into the model (Fig. 4.2 A).  In order to link the land use layer to the SWAT land 

use database, a lookup table (Fig. 4.2 B) containing different SWAT land use class codes 

was used.   

Land use resolution is 30x30 m.  In the study area, there are 14 land use classes 

for land use (Table 4.2).  Agricultural Land Row Crops, which cover 20.30 percent of the 

watershed area, is the most dominant land use class.  Rubber and forest are the other 

dominant land use classes in the study area. 
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Fig 4.2 (A) Land use map               

Table 4.2 Land use distribution in the study area 

SWAT Land use class Land use type % Area 

AGRR Agricultural Land-Row Crops 20.30 

URML Urban Medium Density 0.21 

UCOM Urban- commercial 0.52 

FRST Forest-Mixed 18.91 

FRSD Forest-Deciduous  5.78 

PAST Pasture  3.32 

RNGE Degraded 0.61 

WATR Water bodies 1.72 

RICE Rice 8.47 

RUBR rubber 19.94 

BANA Banana 0.21 

COCO Coconut 18.00 

CASH Cashew 0.44 

BARR Barren  1.58 

 

Fig.4.2 (B) Lookup table of land use map 
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4.1.1.3 Soil map 

The characteristics of the soil and the vegetation cover influence the movement of 

the water.  The soil layer was digitised in ArcGIS and converted to the raster format prior 

to input to the SWAT model.  Using the ArcSWAT project database, soil map data was 

clipped and reprojected.  It was also projected in the same projected coordinated system 

as that of land use.  Soil properties have been entered in the SWAT soil user database.  

The database was linked to the soil map by means of a lookup table, which was given to 

the SWAT model as an input.  The soil map and corresponding lookup table are shown in 

Fig. 4.3 A and 4.3 B respectively.  

In the study area, there are 14 soil classes.  The major soil series are 

Karinganthodu and Mannursree, which contribute approximately 21.79% and 20.02% of 

the watershed area respectively. 

4.1.1.4 Slope map 

The characterisation of the slope depends on the DEM provided in the watershed 

delineation process.  Slope was calculated from the DEM and reclassified into four slope 

classes, the class units were in percent (%).  The slope map and the slope distribution of 

the study area are shown in Fig. 4.4 and Table 4.3 respectively. 

 

Fig. 4.3 (A) Soil map of the study area 
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Fig. 4.3 (B) Lookup table showing area and soil series 

 

 

         Fig. 4.4 Slope map of the study area 

4.1.1.5 Meteorological data 

For the modelling of various physical processes, daily precipitation, maximum 

and minimum temperature, relative humidity, wind speed and solar radiation are needed 

for the SWAT model as meteorological input, with daily precipitation being the most 

important.  Rain gauge location (RARAS, Pattambi and IMD, Mannarkkad) text file 

containing the location details were provided, and these location file were linked to the 

Slope (%) % Watershed Area 

0-5 14.27 

5-10 23.51 

10-30 38.82 

30-9999 23.40 

Table 4.3 Slope class distribution 
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rainfall data file containing the daily precipitation values in mm.  Both these files should 

be in the .txt (.text) extension and in a single folder.  Fig. 4.5 shows the link between 

location file and rainfall data file.  In the same way, the maximum and minimum 

temperature values of two stations (RARS, Pattambi and CWC, Pulamnthole) were given 

as location files which were linked to a data file containing the maximum and minimum 

temperatures in Degree Celsius.  Similarly, the remaining parameters including relative 

humidity, wind speed and solar radiation collected from RARS, Pattambi were also given 

to the model in units percentage fraction, m/s and MJ/m²/day respectively.  

             

Fig.4.5 Location table of rain gauge stations and data table showing the rainfall of 

Pattambi station 

4.1.2 SWAT model setup 

Model setup includes watershed delineation, HRU analysis, input table writing 

and SWAT simulation.  The outputs obtained during each step are discussed briefly in 

this section. 

4.1.2.1 Watershed Delineation 

A procedure using the DEM (Winchell et al., 2013) is used to delineate subbasins.  

In order to avoid potential problems in the routing process in subbasin inlets / outlets, a 

uniform distribution of subbasins in size within the model area should be achieved by 

delineating the watershed in the SWAT model (Winchell et al. 2013).  Watershed 

definition includes three steps to be completed; DEM setup, stream definition and inlet 

outlet definition.  To delineate the watershed, NASA SRTM DEM with a resolution of  
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30 m was used.  After loading the DEM on the model, change the DEM projection to 

WGS_1984_UTM_Zone_43N.  The DEM projection set up has been completed.  The 

streams and outlets were then defined by SWAT.  DEM based stream definition was 

made by specifying a threshold limit of 1810 ha and manually adding one outlet at the 

Pulamanthole gauging station to delineate the watershed based on the outlet location.  

Selection of the output helps to compare model results and observation data.  For 

improved hydrographic segmentation and subbasin delineation, the model was provided 

with drainage lines (Neitsch et al., 2005a).   As a result, the Thuthapuzha watershed was 

divided into 35 subbasins (Fig. 4.6).  Calculation of subbasin parameters, including 

relative stream reach and geomorphic parameters was the final step in the watershed 

delineation.  Thus, a topographic report was generated by the SWAT model showing the 

calculated maximum, minimum, mean and standard deviations of the elevation values for 

each subbasin separately. 

 

Fig. 4.6 Delineated watershed showing outlet points and subbasins 

4.1.2.2 HRU analysis 

HRU analysis includes two steps; Landuse/soils/slope definition and HRU 

definition. Land use and soil data were defined for each subbasin for the modelling of 

different hydrological and other physical processes.  The prepared land use and soil map, 

along with the lookup table, was provided as input to the model.  Four slope classes have 

been selected, and the slope map has been prepared and added to the model.  The soil, 
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land use and slope data were then overlapped together to generate unique combinations 

of land use, soil type and slope known as hydrological response units (HRUs).  The 

model is capable of assessing changes in evapotranspiration and other hydrological 

conditions for various land use and soils by subdividing watersheds into HRUs.  There 

are two methods for creating HRUs, one of which was dominant land use and soil, in 

which one HRU for each subbasin is defined by the dominant land use type and soil type.  

The second method considers multiple HRUs for each subbasin; the number of HRUs 

may differ depending on the requirements of the user.  In this study, the second method 

was chosen and the threshold value was set at 10 percent for all three classes.  Threshold 

levels of soil, land use and slope types were determined below which unique soil, land 

use and slope areas are not considered in subbasins (Winchell et al., 2013).  The use of 

threshold values decreases the number of HRUs in the SWAT model and optimises both 

the SWAT model and the demand for computing (Winchell et al., 2013).  A total of     

841 HRUs were thus created for the Thuthapuzha watershed.  For each subbasin, a 

detailed report on HRUs, land use classes, and soil types were generated. 

4.1.2.3 Writing Input Tables 

It includes two steps; weather stations and write input tables. Precipitation, 

minimum and maximum temperature, wind speed, relative humidity and solar radiation 

from the available meteorological locations were entered into the SWAT model.  The 

location file in the text format is imported into the model.  After importing all the 

required data, the initial watershed input values must be defined using the write input 

table option.  SWAT generates default input values for each HRU and subbasin in the 

ArcGIS Geodatabase using the information already given for soil, land use, topography 

and meteorological data to the model. All the spatial data used in ArcSWAT were 

projected to WGS_1984_UTM_Zone_43N. The metric unit system was used for all 

SWAT tabular inputs.  
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4.1.2.4 SWAT simulation 

This includes running the SWAT model and reading the outputs.  The start and 

end dates of the simulation were selected and the SWAT simulation was completed.  The 

rainfall distribution was set us skewed normal.  The simulation period was fixed between 

1989 and 2009 (21 years) for calibration and 2010-2017 (8 years) for validation; the 

warm-up period is three years.  For climate change studies, simulations were conducted 

between 2021-2040 and 2041-2170.  The selected output files were exported to the 

database, and the simulation was saved with a proper name.  SWAT error check option 

enables the user to check whether any result contains an error. 

4.1.3 Sensitivity Analysis and calibration using SWAT- CUP 

The choice of parameters for the calibration process depends up on their 

significance to the simulated output.  Parameter sensitivity was evaluated using the   

built-in SWAT-CUP sensitivity analysis tool using the SUFI-2 algorithm linked to the 

SWAT.  SWAT-CUP uses t-stat and p-value to determine the sensitivity of the 

parameter. The parameter will be more sensitive if the t-stat value is higher and the        

p-value is smaller (Abbaspour, 2015).  There are two indicators in the SUFI-2 algorithm 

to quantify the calibration strength and model uncertainty, namely the p-factor and the     

r-factor. 

As suggested in the calibration procedure developed by Abbaspour et al. (2015), 

the sequential calibration process has been carried out.  A new project was created 

in SWAT- CUP after setting up the ArcSWAT model using the best parameter estimates 

based on the available data, analyst expertise and literature.  All files in SWAT TxtInOut 

were copied to the project directory in the SWAT-CUP project setup.  The calibration 

process was done after the calibration inputs were modified as per the research 

requirement.  In the calibration parameter input, a total of thirteen parameters were given 

for sensitivity analysis.  Initial calibration ranges were assigned to parameters based               

on the previously identified parameters.  It is also possible to define additional,                    

user-defined parameter ranges.  The model was run 500 times (great time savings can be                

made by using the parallel processing option in SWAT-CUP).  The most sensitive                    
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parameters were determined after iteration using the Global Sensitivity Analysis Tool.                  

Post-processing options are calculated after iteration, where 95 percent prediction 

uncertainty and the objective function for all observed variables were calculated, a new 

set of parameter ranges is generated.  Iteration with changed parameter ranges was 

conducted again, based on new suggested parameter range sets.  The procedure was 

continued until satisfactory NSE and R² model results were achieved. A total of three 

iterations have been made.  SUFI-2s Global Sensitivity ranked the 13 selected parameters 

by changing them over a defined range of values and comparing those parameters with 

output discharge variations.  Discharge was taken as the observed variable for analysis.  

Out of the thirteen parameters, eight of the most sensitive parameters were chosen for 

calibration.  During calibration, the input values of the model were adjusted to match the 

simulated and observed discharge.  The calibration period was set at 21 years from    

1989 to 2009.  The parameters ranking after sensitivity analysis and the global sensitivity 

output are shown in Table 4.4 and Fig. 4.7 respectively.  The dotty plot of the most 

sensitive parameter in SWAT-CUP (Fig. 4.8) shows the objective function values as a 

function of the parameters.  It also indicates whether or not the objective function is 

sensitive to the parameter.  When points are scattered and haphazard, it indicates the 

sensitivity is small and the sensitivity is higher when there is a trend. 
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Table 4.4 Parameters raking after sensitivity analysis and fitted range of values 

Rank Parameter SWAT-CUP initial range Range after calibration 

1 r__CN2.mgt -0.2  to 0.2 -0.16 to 0.08 

2 v__ALPHA_BF.gw 0  to 1 -0.43 to 0.52 

3 v__GW_DELAY.gw 30 to 450 -117.67 to 260.83 

4 v__GWQMN.gw 0 to 2 0.78 to 2.35 

5 r__SOL_AWC().sol -0.2 to 0.4 0.09 to 0.66 

6 v__ESCO.hru 0.8 to 1 0.90 to 1.10 

7 v__CH_K2.rte 5  to 130 57.80 to 163.45 

8 r__SOL_K().sol 0  to 100 30.04 to 90.16 

9 r__SOL_BD().sol 0.9 to 3 1.64 to 3.13 

10 v__CH_N2.rte -0.01 to 0.3 -0.13 to 0.16 

11 a__SURLAG.bsn 0.05   to 24 11.53 to 34.50 

12 v__GW_REVAP.gw 0.02 to 0.2 0.10 to 0.26 

13 r__EPCO.hru 0 to 1 0.14 to 0.71 

 

In the above table, v-represents the default value is replaced by the value,               

r-represents that the existing value is multiplied by the default value, and a-represents the 

default values is added by the value. 
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Fig. 4.7 Global sensitivity output showing ranking using t-stat and p-value 
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Fig. 4.8 Dotty plot showing the most sensitive parameters 

4.1.5 Model performance evaluation 

Model performance was evaluated on the basis of three statistical parameters, 

namely NSE (Nash-Sutcliffe Efficiency), R² (Coefficient of Determination) and PBIAS.  

As per the performance rating as discussed in the previous chapter, the performance of 

the model was analysed for both the calibration and the validation period using discharge 

as the parameter. It was concluded from the values that the model performed well in both 

periods.  Model evaluation statistics for monthly discharge of Pulamanthole gauging 

station is shown in Table 4.5.  The performance evaluation based on scattered plot and 

time series graph for both calibration and validation is shown in Fig. 4.9 to Fig. 4.12. 
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Table 4.5 Model evaluation statistics 

Statistical parameter Calibration period Validation period 

NSE 0.88 0.8 

R² 0.88 0.8 

PBIAS (%) -1.4 5.4 

4.1.6 Model Validation 

Following satisfactory calibration of the hydrological model (by achieving very 

good performance statistics), the validation process was carried out.  The validation 

period consists of the remaining eight years (2010 – 2017).  The model was validated 

using the SWAT-CUP interface following the calibration of the model.  Validation of the 

model refers to running the model without further changes in the calibration parameters 

and comparing the observed and simulated discharges.  From 2010 to 2017, the SWAT 

model was run with eight calibrated parameters without any further parameter changes. 

The NSE, R² and PBIAS were used to measure the model performance and the p-factor 

and r-factor were used to quantify the uncertainty of the prediction.  During calibration, 

the p-factor and the r-factor were 0.77 and 0.64, and during validation, the p-factor and 

the r-factor were 0.85 and 0.56, respectively.  Overall statistics shows that the model can 

be successfully used to simulate outputs in the Thuthapuzha watershed.  The 95PPU plot 

obtained from SWAT-CUP and the corresponding rainfall distribution for both the 

calibration and the validation period are shown in Fig. 4.13.  The developed model was 

further used to achieve the remaining objectives of the study.  Streamflow simulated by 

the developed model for calibration and validation period was compared with the 

observed as shown in Fig. 4.14 and annual observed streamflow (Mm³) of Pulamanthole 

gauging station during 1989-2017 are given in Appendix XI. 
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Fig. 4.9 Observed and simulated discharge at Pulamanthole for calibration period 

 

Fig. 4.10 Observed and simulated discharge at Pulamanthole for validation period 
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Fig. 4.11 Scatter plot of observed and simulated monthly discharges at 

Pulamanthole gauging station during calibration period 

 

 

Fig. 4.12 Scatter plot of observed and simulated monthly discharges at 

Pulamanthole gauging station during validation period 
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Fig. 4.13 95PPU plot obtained from SWAT-CUP and corresponding 

monthly rainfall 

 

Fig. 4.14 Observed and simulated streamflow at Pulamanthole during the entire 

simulation period 
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4.1.7 Water balance of Thuthapuzha watershed 

The water balance components of the Thuthapuzha watershed were predicted by 

the developed model.  From the output reach file, the water balance components 

including surface runoff, lateral flow, evapotranspiration and ground water flow were 

represented as the percentage of rainfall for the calibration period from 1992-2009.      

The percentage of each components were plotted as pie diagram as shown in Fig. 4.15,       

Fig. 4.16 and Fig. 4.17.  From the pie diagram, it is clear that the outflow from the 

watershed is mainly in the form of surface runoff (ranges between 29 to 51%) followed 

by ground water flow (23 to 31%). Evapotranspiration varied from 15 to 38% and lateral 

flow from 6 to 8% during 1992-2009.  Thus it is concluded that the major portion of river 

flow is in the form of surface runoff and groundwater flow.  Groundwater component is 

significant during summer season since the summer river flow is mainly contributed by 

the ground water.  Conservation practices are playing an important role in conserving the 

water during rainy season and contribute a major part as ground water.  This highlights 

the need to analyse the conservation practices impact on river flow of the watershed. 

A relationship between the rainfall and runoff was also analysed to know the 

trend of streamflow in the watershed from 1992-2017.  For that, a time series 

representation of streamflow and rainfall was made as shown in Fig. 4.18.  A decreasing 

trend in the streamflow was observed from 1992 to 2017 with the observed rainfall.  This 

shows that there is a need for evaluating the impact of climate change on streamflow. 
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Fig. 4.15 Water balance of Thuthapuzha watershed from 1992-1999 
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Fig. 4.16 Water balance of Thuthapuzha watershed from 2000-2004 
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Fig. 4.17 Water balance of Thuthapuzha watershed from 2005-2009 
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                    Fig. 4.18 Annual streamflow and average annual rainfall of Thuthapuzha 

watershed 

4.2 IMPACT OF CLIMATE CHANGE ON WATERYIELD AND DROUGHT 

INTENSITY 

The developed model was used to study the impact of climate change on 

Thuthapuzha watershed.  Projected climate change is the basis for doing climate change 

analysis.  From the literature review, GFDL-CM3 model was selected for projecting 

climate change data’s of Thuthapuzha river basin.  The model data from CMIP5 dataset 

and CORDEX-SA dataset was taken and the following procedures were adopted to select 

the input data for SWAT model to simulate the future impact of climate change on 

streamflow and drought intensity. 

4.2.1 Selection of bias correction method  

Uncertainties associated with the climate model datasets need to be corrected 

before impact related studies since there will be a great mismatch between observed and 
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predicted datasets.  In order to analyse the datasets from CMIP5 and CORDEX-SA, bias 

correction was done to eliminate the uncertainties associated with the future climate 

change.  Graphical representation of observed data’s which are not bias corrected 

(precipitation, maximum temperature and minimum temperature) from CMIP5 and 

CORDEX-SA datasets (Fig. 4.19 to Fig. 4.21) shows that there exists a great mismatch 

between observed and projected datasets. Thus, different bias correction methods were 

performed to determine which bias correction method is best suited for further analysis 

separately for precipitation, maximum temperature and minimum temperature for both 

the datasets.  To compare the bias corrected data with the observed data, the historical 

data from 1989-2005 was taken.  Bias corrected methods were statistically as well as 

graphically compared to establish the results.  Bias correction was performed using 

CMhyd software. 

 

 

Fig. 4.19 Comparison between observed precipitation and projected datasets 

without bias correction 
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Fig. 4.20 Comparison between observed maximum temperature and projected 

datasets without bias correction 

 

Fig. 4.21 Comparison between observed minimum temperature and projected 

datasets without bias correction 
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4.2.1.1 Bias correction of precipitation data 

For precipitation data, five different bias correction methods were used separately 

for the CMIP5 and CORDEX-SA datasets.  They are Linear Scaling (LS), Local Intensity 

Scaling (LIS), Delta change correction (DCC), Distribution mapping (DM) and Power 

transformation (PT).  Statistical comparison of the precipitation data (Table. 4.6) was 

done using three statistical parameter; standard deviation, coefficient of variation and 

correlation coefficient. Graphical comparison of CMIP5 and CORDEX-SA data is shown 

in Fig. 4.22 and Fig. 4.23 respectively.  Power transformation method is found to be the 

best correlated one among others when comparing CMIP5 dataset with observed data 

while linear scaling showed a good correlation with observed data when comparing 

CORDEX-SA dataset. 

Table 4.6 Statistical comparison of different bias correction methods of future 

climate datasets (CMIP5 and CORDEX-SA) with observed precipitation 

 Observed  LS  LIS  DCC  DM PT 

Precipitation_CMIP5_GFDLCM3 

Standard deviation 213.34 214.57 151.66 212.03 194.25 214.56 

Coefficient of variation 1.04 1.04 1.06 1.03 1.09 1.04 

Correlation coefficient  1.00 0.99 1.00 0.99 1.00 

Precipitation_CORDEX-SA_GFDLCM3 

Standard deviation 213.34 212.93 212.94 211.82 215.35 212.94 

Coefficient of variation 1.04 1.04 1.04 1.04 1.03 1.04 

Correlation coefficient  1.00 1.00 1.00 1.00 1.00 
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Fig. 4.22 Comparison of observed precipitation and bias corrected methods of 

CMIP5 precipitation datasets 

 

Fig. 4.23 Comparison of observed precipitation and bias corrected methods of 

CORDEX-SA precipitation datasets 
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4.2.1.2 Bias correction of temperature data 

For temperature data correction (maximum temperature and minimum 

temperature), four different bias correction methods were used, separately for CMIP5 and 

CORDEX-SA datasets. They are Linear Scaling (LS), Variance Scaling (VS), Delta 

change correction (DCC) and Distribution mapping (DM).  Statistical comparison of the 

maximum temperature data (Table 4.7) and minimum temperature data (Table 4.8) was 

done using three statistical parameters; standard deviation, coefficient of variation and 

correlation coefficient.  Graphical comparison of CMIP5 and CORDEX-SA temperature 

data separately for maximum and minimum temperature is shown in Fig. 4.24, Fig. 4.25, 

Fig. 4.26 and Fig. 4.27.  For maximum temperature as well as minimum temperature 

data, linear scaling is found to be the best correlated one among others when comparing 

CMIP5 dataset with observed data while variance scaling showed a good correlation with 

observed data when comparing CORDEX-SA dataset. Zhang et al., 2018 used CMhyd 

software to bias correct the CanRCM4 model data and found that DM performed the best 

for both precipitation and temperature. Thus, the selection of bias correction method 

primarily depends on the model used in the study.  

 

Fig. 4.24 Comparison of observed maximum temperature and bias corrected 

methods of CMIP5 maximum temperature datasets 
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Fig. 4.25 Comparison of observed maximum temperature and bias corrected 

methods of CORDEX-SA maximum temperature datasets 

Table 4.7 Statistical comparison of different bias correction methods of future 

climate datasets (CMIP5 and CORDEX-SA) with observed maximum temperature 

 Observed  LS  VS  DCC  DM 

Maximum Temperature_CMIP5_GFDLCM3 

Standard deviation 2.222348 2.222348 2.222336 

 

2.222778 

 

2.221779 
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Fig. 4.26 Comparison of observed minimum temperature and bias corrected 

methods of CMIP5 minimum temperature datasets 

 

 

Fig. 4.27 Comparison of observed minimum temperature and bias corrected 

methods of CORDEX-SA minimum temperature datasets 
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Table 4.8 Statistical comparison of different bias correction methods of future 

climate datasets (CMIP5 and CORDEX-SA) with observed minimum temperature 

 Observed  LS  VS  DCC  DM 

Minimum Temperature_CMIP5_GFDLCM3 

Standard deviation 1.353914 1.354081 1.354255 1.352858 1.353748 

Coefficient of variation 0.058053 0.058060 0.058068 0.058035 0.058046 

Correlation coefficient  0.999999 0.999999 0.999664 0.999999 

Minimum Temperature _CORDEX-SA_GFDLCM3 

Standard deviation 1.353914 1.403428 1.402229 1.401649 1.404167 

Coefficient of variation 0.058053 0.062520 0.062464 0.062437 0.062554 

Correlation coefficient  0.985930 0.986041 0.985959 0.986126 

 

4.2.2 Comparison of CMPI5 and CORDEX-SA bias corrected outputs 

In order to make choice between CMPI5 and CORDEX-SA datasets, the bias 

corrected outputs of both the datasets were compared among each other statistically using 

the above tables.  From the tables, it was found that precipitation datasets are showing a 

good correlation with the observed data when using CORDEX-SA datasets whereas 

temperature datasets (minimum and maximum temperature) are showing good correlation 

with observed data when using CMIP5 datasets.  In general, both the datasets are almost 

showing excellent correlation with the observed one with only a small decimal point 

variation.  

4.2.3 Criteria for selecting climate change data input 

CMIP5 datasets provides the global climate data whereas CORDEX-SA datasets 

is specifically for South Asian domain and provides regional data.  The lack of regional 

information makes the GCM output unsuitable for a number of impact studies requiring 

regional information.  RCMs have not only been used for downscaling GCM climate 
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change simulations, but also for seasonal climate predictions with similar objectives to 

obtain useful regional climate data.  A strong conclusion cannot be drawn for selecting 

bias corrected GCM and RCM due to the different ways of controlling the atmospheric 

circulation in the RCM and the GCM simulations.  Thus by considering the above aspects 

as well as the results obtained, CORDEX- SA dataset was selected.  CORDEX- SA is 

providing data for two RCP scenarios, RCP4.5 and RCP8.5 which represents low and 

high scenario respectively.  A medium scenario related study is not possible using 

CORDEX-SA datasets. Since CMIP5 datasets provides medium scenario datasets, RCP6 

data from CMIP5 dataset was also taken for the study purpose.  In general, RCP4.5 (low) 

and RCP8.5 (high) scenarios from CORDEX-SA bias corrected dataset and RCP6 

(medium) scenarios from CMIP5 bias corrected dataset from 2021-2070 were selected 

for further impact related analysis. 

4.2.4 Predicted future precipitation and temperature for different scenarios 

Monthly variation of the bias corrected data including precipitation and 

temperature data for different scenario selected (RCP4.5, RCP6 and RCP8.5) from    

2021-70 were compared with the observed data from 1989-2017.  Precipitation data 

variation under different scenarios for two time periods, 2021-40 and 2041-70 with the 

observed data is shown in Fig. 4.28 and the average monthly precipitation values under 

different scenarios is given in Appendix XII.  There is a significant decrease in 

precipitation during June to December for RCP 4.5 and increase in precipitation from 

January to May except February for 2021-40. During 2041-70 for RCP 4.5, increase in 

precipitation was found for all months except June, July, September and October.  

Significant increase in precipitation was observed for RCP6 for almost all months except 

February, July and October during 2021-40 whereas from 2041-70, increase in 

precipitation was observed for all months except February and October.  For RCP 8.5, 

decrease in precipitation was found for all the months except January, March and 

December from 2021-40 whereas from 2041-70 decrease is precipitation is found for the 

months of June, July, September, October and November.  When comparing between 

scenarios, precipitation is increasing for RCP6 whereas decreasing for both RCP8.5 and 
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RCP4.5. Chong-Hai and Ying (2012) projected precipitation over China under RCP 

Scenarios using a CMIP5 multi-model ensemble and found that precipitation will tend to 

decrease especially under RCP 8.5.  Rajczak and Schar (2017) projected precipitation and 

its extremes over the European continent using EURO‐CORDEX Regional Climate 

Models (RCMs) under RCP4.5 and RCP 8.5 and found that precipitation decreases under 

both RCP scenarios but predicted extreme rainfalls. The percent change in monthly 

rainfall from the observed monthly values is plotted in Fig. 4.29.  The percent decrease in 

precipitation is found to be higher for RCP8.5 followed by RCP4.5 whereas percent 

increase in precipitation is higher for RCP6.  In RCP4.5, emissions are starting to decline 

by around 2045 to reach approximately half of the 2050 levels by 2100.  Emissions 

continue to rise in RCP8.5 throughout the 21st century (Riahi et al., 2011).  Based on the 

annual average precipitation predicted for the entire period (2021-70), a decrease of about 

13 and 16 percent was found for RCP4.5 and RCP8.5 respectively and an increase of     

33 percent was observed for RCP6 from the observed annual average precipitation.  

Unlike temperature, there exist large uncertainties in the precipitation obtained from 

GCM than RCM.  Since RCP6 scenario data was collected from CMIP5 GCM datasets, 

precipitation data is showing an increase in trend than the observed period of time.  

Moreover, in RCP6 scenarios, emission peaks around mid century (2080s) and then 

stabilises by 2100. Since the time period taken for the study purpose is from 2021-2070 

where peak emission occurs, may result in the increased precipitation.  This change in 

precipitation pattern may affect the streamflow of the Thuthapuzha watershed in future, 

thus proper planning and conservation of soil and water should be taken in advance. 
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Fig. 4.28 Comparison of observed and bias corrected monthly precipitation under 

different scenarios 

 

Fig. 4.29 Percent change in monthly rainfall from observed data under different 

scenarios 
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Monthly variation of bias corrected maximum and minimum temperature data for 

different RCP scenario from 2021-70 in comparison with observed maximum and 

minimum temperature is shown in Fig. 4.30 and Fig. 4.31 respectively and the average 

monthly values are given in Appendix XIII and XIV respectively.  Maximum 

temperature shows an increase in the trend for all months in the RCP4.5 and RCP8.5 

scenarios compared to the observed data, while the RCP6 scenario shows a decrease in 

the trend for January, February and December.  Maximum temperature projected for the 

entire India showed an increase within the range 2.5°C to 4.4°C by end of the century 

(Bal et al., 2016).  When comparing minimum temperature data, it is found that minimum 

temperature is almost in the same range as that of the observed minimum temperature for 

RCP4.5 and RCP8.5 scenarios.  A similar increasing trend in minimum temperature was 

also noted in case of RCP6 scenario.  These results were used for studying the climate 

change impact using SWAT model.  

 

Fig. 4.30 Comparison of observed and bias corrected monthly maximum 

temperature under different scenarios 

 

0

5

10

15

20

25

30

35

40

45

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

M
ax

im
u

m
_t

em
p

 (
°C

) 

Month 

Max_Temp_observed
RCP_4.5
RCP_8.5
RCP_6



100 
 

 

 

Fig. 4.31 Comparison of observed and bias corrected monthly minimum 

temperature under different scenarios 

4.2.5 Impact of climate change on streamflow under different scenarios 

The developed model was used to study the climate change impact on streamflow 

of the watershed.  Climate model GFDL-CM3 data corresponding to three RCP 

scenarios; RCP4.5, RCP6 and RCP8.5 from 2021-2070 were used for the study.  For 

convenience of the study, the entire projected period of simulation was divided into two 

time periods; 2021-2040 and 2041-2070.  Although it is not a new concept to use climate 

model outputs in a hydrological model, few studies have focused on the impact of climate 

change on watersheds in humid tropical areas. The bias corrected precipitation and 

temperature data were given as weather inputs to the SWAT model.  The streamflow 

generated by the SWAT model was compared for each of the climate change scenarios 

considered in the study to assess the impact of each RCP scenario. The streamflow 

simulated by the projected data was compared with the observed flow to analyse the trend 

of streamflow in future periods. 
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Annual and monthly streamflow under different scenarios (RCP4.5, RCP6, and 

RCP8.5) was studied.  The total streamflow at Pulamanthole gauging station is based on 

the combined features of all the upstream subbasins of Thuthapuzha watershed.  The 

annual observed streamflow of Pulamanthole gauging station was compared with the 

simulated future annual streamflow values.  Predicted annual streamflow under different 

scenarios in comparison with observed streamflow for time period 2021-40 and 2041-70 

is shown in Fig.  4.32 and Fig. 4.33 respectively and the annual average values are given 

in Appendix XV and XVI respectively. From the figure, it is found that the annual river 

flow under all the scenarios selected for the projected period is higher than the present 

annual river flow.  When comparing between scenarios, increase in annual streamflow is 

found to be higher in RCP6 scenario (37-60%) followed by RCP4.5 (13-16%) and 

RCP8.5 (9-16%) during the entire period of simulation.  Sathya and Thampi (2020) 

studied the impact of projected climate change on streamflow of the Chaliyar river basin 

of Kerala and reported that the annual streamflow is likely to increase by about 27.27% 

under RCP 4.5 and 42.44% under RCP 8.5. The increase in streamflow may be due to the 

changes in the projected precipitation pattern.  Githui et al., 2009 reported an increase in 

streamflow due to increased rainfall in western Kenya.  Anthropogenic activities have 

already changed the river flow patterns in several river basins.  Moreover, there are 

chances of increased population, land use changes, increased demand for irrigation can 

also add to this streamflow change.  Decrease in streamflow is also observed in some 

years between 2021-40 and 2041-70 due to increase in temperature during the predicted 

period.  Overall annual average streamflow for the entire simulation is showing an 

increase in streamflow under all RCP scenarios.  Predominant increase in streamflow was 

found in RCP6 scenario may be due to changes in the precipitation patterns observed 

from the projected CMIP5 datasets.  The simulated streamflow using projected dataset 

from CORDEX-SA for RCP4.5 and RCP8.5 shows that annual average streamflow under 

RCP8.5 is less than that of RCP4.5.  In both the periods from 2021-40 and 2041-70, it is 

observed that the increase in streamflow is more significant at the end periods of the 

simulation.   
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Predicted monthly streamflow under different scenarios in comparison with 

observed streamflow for the time period 2021-40 and 2041-70 is shown in Fig. 4.34 and 

Fig. 4.35 respectively.  For almost all the months in both the periods and all the scenarios, 

the streamflow was observed to be higher than the one observed.  In case of rainfall also, 

an increase in rainfall is found for all the months this might have caused increased 

streamflow for the predicted periods.  Predicted monthly streamflow under different 

scenario in comparison with observed from 2021-70 is shown in Fig. 4.36 and the 

average monthly values are given in Appendix XVII.  During 2021-70, the streamflow in 

RCP4.5 showed almost similar trend in variation as that of observed with a slight 

increase in streamflow for all the months except July and October during 2041-70.  In 

RCP8.5 from 2021-70, the streamflow is found to be increasing from January to July and 

decreasing afterwards. But the peak flow is found to be higher than that of RCP4.5 from 

June to August. Thus, in RCP8.5 it is found that during peak flows the climate will 

become wetter than that of current scenario.  Moreover, during 2021-70 in RCP6 

scenario, increase in streamflow is observed in all months except during December in the 

period from 2021-40.  The observed and simulated data is showing similar trend in 

variation except in case of RCP6 scenario during the months of June and July, where 

there is peak flow in the catchment.  Scientists have reported this uncertainty in 

predicting the peak flows when using SWAT model.  The streamflow increase is found to 

be significant during the end period of simulation for all the scenarios taken for the study 

purpose.  Thus, necessary steps should be taken to mitigate the extreme events due to 

streamflow increase during future periods. 
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Fig. 4.32 Predicted annual streamflow under different scenario from 2021-40 

 

Fig. 4.33 Predicted annual streamflow under different scenario from 2041-70 

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

0

1000

2000

3000

4000

5000

6000

7000

2
0

2
1

2
0

2
3

2
0

2
5

2
0

2
7

2
0

2
9

2
0

3
1

2
0

3
3

2
0

3
5

2
0

3
7

2
0

3
9

S
tr

ea
m

fl
o
w

 (
M

m
³)

 

Year 

RCP_4.5_2021-40 RCP_8.5_2021-40

RCP_6_2021-40 streamflow_observed(Mm3)

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

0

1000

2000

3000

4000

5000

6000

7000

2
0

4
1

2
0

4
3

2
0

4
5

2
0

4
7

2
0

4
9

2
0

5
1

2
0

5
3

2
0

5
5

2
0

5
7

2
0

5
9

2
0

6
1

2
0

6
3

2
0

6
5

2
0

6
7

2
0

6
9

S
tr

ea
m

fl
o
w

 (
M

m
³)

 

Year 

RCP_4.5_2041-70 RCP_8.5_2041-70

RCP_6_2041-70 streamflow_observed(Mm3)



104 
 

 

 

Fig. 4.34 Predicted monthly streamflow under different scenario from 2021-40 

 

Fig. 4.35 Predicted monthly streamflow under different scenario from 2041-70 
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Fig. 4.36 Predicted monthly streamflow under different scenario in comparison 

with observed from 2021-70 

4.2.6 Water balance component under different scenarios 

Water balance components of the basin for future predicted climate under 

different RCP scenarios from 2021-70 in comparison with the observed period of      

1992-2017 is shown in Table 4.9.  The water balance component is also affected by 

change in precipitation pattern and decrease in temperature predicted for future on 

account of climate change.  From the table, it is found that the precipitation increase is 

significant at the end period of simulations when compared to observed period.  From the 

trend analysis of rainfall, a decreasing trend was observed from 1992-2017 whereas the 

predicted climate shows a reverse trend during the end period which might be due to the 

effect of rainfall patterns predicted from the model.  But this research is based on a single 
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ensembles is necessary since researchers have already reported some uncertainty 

regarding impact studies using single model for projecting climate data’s. 

Water balance components including surface runoff, ground water flow, 

evapotranspiration and lateral flow were represented as the percentage of rainfall for the 

entire simulation period (Fig. 4.37) and for the future RCP scenarios viz., RCP4.5, RCP6 

and RCP8.5 is shown in Fig. 4.38, Fig. 4.39 and Fig. 4.40 respectively.  The percentage 

of each component was plotted as pie diagram.  From the pie diagram, it is clear that the 

outflow from the watershed is mainly in the form of surface runoff, followed by ground 

water flow, evapotranspiration and lateral flow under all RCP scenarios similar to the 

observed period of time.  The percent contribution of rainfall to all these components is 

changing under different scenarios.  Analysis of the results showed that in case of 

RCP4.5, the contribution of surface runoff is about 43-51% followed by groundwater 

flow which is about 24-28% where as in case of RCP8.5 scenario, the contribution of 

surface runoff is about 39-46% followed by groundwater component which is about      

26-29%.  In case of RCP6, the major fraction of rainfall is contributed by surface runoff 

(43-53%) followed by groundwater component (27-33%).  In all the scenarios, surface 

runoff and groundwater component range is higher than that of observed period with 

surface runoff about 40% and groundwater flow in the range of 28-29%.  Significant 

contribution is observed in RCP6 followed by RCP4.5 and RCP8.5.  ET ranges from       

24-25% of the annual rainfall for the observed period and a similar variation in the range 

of 20-24% in RCP4.5 and 20-25% in RCP8.5 is observed for future climate change.       

A decrease of 14-19% of ET is observed in the analysis of RCP6 might be due to higher 

fractional contribution of rainfall as surface runoff.  Lateral flow component is lowest 

comprising only 7% of the total precipitation and there is no significant variation between 

the scenarios for the lateral component.  From this analysis, it is clear that the streamflow 

changes in the basin  is due to the high contribution of surface runoff in all the scenarios 

and this analysis can be taken as a justification regarding the streamflow changes 

predicted during climate change conditions. 
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Table 4.9 Water balance components under different climate scenarios 

Period 

Precipitation 

(mm) 

ET 

(mm) 

SURQ 

(mm) 

LAT_Q 

(mm) 

GW_Q 

(mm) 

1992-2004 2733.97 679.90 1080.22 196.01 736.54 

2005-2017 2456.81 581.46 961.78 180.06 695.61 

RCP_4.5_2021-30 2132.01 501.94 945.39 121.29 523.83 

RCP_4.5_2031-40 2268.34 495.09 953.92 145.21 621.97 

RCP_4.5_2041-50 2250.06 443.74 1113.45 119.92 529.44 

RCP_4.5_2051-60 2450.32 552.62 1038.27 152.18 659.60 

RCP_4.5_2061-70 2619.75 515.18 1242.19 152.84 656.27 

RCP_6_2021-30 2830.10 449.77 1189.38 215.12 908.89 

RCP_6_2031-40 3371.50 453.24 1756.22 212.13 894.31 

RCP_6_2041-50 2458.25 447.89 963.04 188.63 793.25 

RCP_6_2051-60 2695.96 455.63 1220.92 185.08 790.18 

RCP_6_2061-70 2703.93 464.71 1140.67 199.65 836.01 

RCP_8.5_2021-30 2140.83 490.75 929.25 131.06 553.37 

RCP_8.5_2031-40 2250.73 476.56 1023.61 135.34 573.24 

RCP_8.5_2041-50 2026.06 491.40 773.88 131.75 577.12 

RCP_8.5_2051-60 2269.50 503.66 924.80 146.43 647.44 

RCP_8.5_2061-70 2742.89 530.35 1237.16 170.25 747.86 
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Fig. 4.37 Predicted water balance component for the entire simulation period 

 

 

 

Fig. 4.38 Predicted water balance component in RCP4.5 scenario from  

2020-2070 
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Fig. 4.39 Predicted water balance component in RCP6 scenario from 2020-2070 
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Fig. 4.40 Predicted water balance component in RCP8.5 scenario from 

 2020-2070 
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4.2.7 Drought intensity calculation for the observed period  

Precipitation and temperature based drought indices were taken for analysing 

drought for observed as well as for future climate scenarios.  SPI index based on 

precipitation and RDI index based on precipitation and potential evapotranspiration is 

taken for the drought intensity analysis.  The DrinC software was used to calculate both 

SPI and RDI indices based on gamma distribution method with a 12 month period. 

Drought in the Thuthapuzha watershed for the observed period from 1989-2017 

was analysed using both SPI and RDI index.  SPI and RDI drought index calculation for 

the observed period is shown in Fig. 4.41 and Fig. 4.42 respectively.  A functional and 

quantitative definition of drought can be created using SPI as an indicator. The calculated 

annual SPI index showed that droughts were quite frequent during the 1999-2000,     

2001-2003, 2007-2008, 2011-2012, and 2016-2017.  However, a severe dry period was 

observed from 2015-2016.  The duration of drought for the entire historical period from 

1989-2017 and the corresponding number of dry and wet years and are shown in Table 

4.10.  Because the SPI is normalised, it is possible to represent drier and wetter climates 

in the same way.  The number of dry years (Moderately dry, severely dry and extremely 

dry) observed is about seven years from 1989-2017.  Moderately dry events have 

occurred 6 times from 1989-2017 whereas severely dry events have occurred once during 

2015-16.  An important point to note was that during the period 1989-2017, no extremely 

dry events were observed when using SPI as drought indicator. 
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Fig. 4.41 SPI for the observed period from 1989 to 2017 

Table 4.10 SPI analysis of observed period 
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The standardised RDI (RDIst) followed the same method used to calculate the 

SPI.  Apart from rainfall data, the RDIst calculation requires PET and therefore gives a 

better interpretation than the SPI. Twelve month RDIst calculated for the entire historical 

period between 1989-2017 showed that droughts were quite frequent during 1995-1996, 

1999-2000, 2001-2002, 2007-2008, 2011-2012, and 2015-2017.  All the drought periods 

observed using RDI were under moderate dry period.  Similar to SPI calculation, no 

extreme drought years were observed during 1989-2017. The duration of the drought for 

the entire historical period and the corresponding number of dry years are shown in   

Table 4.11.  The total number of dry years (Moderate, severe and extreme) observed are 

seven years similar to SPI from 1989-2017 but having only moderate dry periods and no 

severe and extreme dry periods.  When comparing both the indices, it is found that both 

indices are showing similar trend with little variation in the drought period but the overall 

number of drought occurrence is same. 

 

Fig. 4.42 RDI for the observed period from 1989 to 2017 
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Table 4.11 RDIst analysis of observed period 

 
RDIst 

Number of 

drought 
Duration 

 
Mild (-1 to -0.5) 3 1989-1990, 2002-2003, 2014-2015 

 Moderate (-1.5 to -1) 7 
1995-1996, 1999-2000, 2001-2002, 

2007-2008, 2011-2012, 2015-2017 

 

Severe (-2 to -1.5) 0 - 

Extreme (< -2) 0 - 

4.2.8 Comparison and regression analysis between SPI and RDIst under different 

scenarios 

In order to determine the drought occurrence for the projected climate scenarios, 

the projected precipitation and temperature data’s were given as input to the DrinC 

software and the SPI index as well as RDIst was calculated.  But from the analysis of 

drought intensity for the observed period of time, it is found that both the indices are 

showing similar trend.  To select the index for further analysis of drought intensity for the 

future period, a comparative study between SPI and RDIst under different RCP scenarios 

were done from 2021-2070.  Predicted temperature and precipitation for projected period 

was already studied and found that temperature is almost in the same range as that of 

observed period whereas precipitation is increasing under all the RCP emission scenarios.  

The severity of the drought will be affected by changes in precipitation and temperature 

caused by climate change.  Thus, both drought indices were compared to select the index 

for analysing climate change impact on drought intensity.  Comparison between SPI and 

RDIst under different RCP scenarios, RCP4.5, RCP6 and RCP8.5 is shown in Fig. 4.43, 

Fig. 4.44 and Fig. 4.45 respectively.  From the graphical representation, it is clear that 

both SPI and RDIst is showing similar trend under all the RCP scenarios considered.  The 

number of drought events was also analysed between SPI and RDIst from 2021-70 which 

is shown in Table.4.12.  When using both the index, SPI and RDIst, it is found that 

drought events will occur 8 times during RCP4.5 and 6 times during RCP6 scenario.  In 

case of RCP8.5, it is found that drought events will occur 10 times when using SPI and 
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13 times when using RDIst.  Thus, it is concluded that SPI and RDI are showing similar 

trend in both RCP4.5 and RCP6 scenario and a little variation in RCP8.5 scenario with 

almost similar duration in all the cases.  

 

Fig. 4.43 Comparison between SPI and RDI for RCP4.5 scenario from 2021-2070 

 

Fig. 4.44 Comparison between SPI and RDI for RCP6 scenario from 2021-2070 
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Fig. 4.45 Comparison between SPI and RDI for RCP8.5 scenario from 2021-2070 

Table 4.12 Number of drought events using SPI index and RDI index 

Drought 

index 
4.5 6 8.5 

SPI_2021-70 

8 

(2023-24, 30-31, 

32-33, 37-38,         

43-46, 56-57) 

6 

 (2044-45, 48-50, 

60-61, 63-64,      

68-69) 

  

10  

(2021-22, 25-27, 31-32, 

39-40, 42-43, 47-49,      

60-61, 67-68) 

 

RDI_2021-70 

8  

(2023-24, 30-31, 

32-33, 37-38,       

43-44, 44-46,            

56-57) 

6 

(2044-45, 48-50, 

60-61, 63-64,           

68-69) 

 

13  

(2021-22, 25-26, 26-28, 

31-32, 39-40, 42-43,      

45-46, 47-49, 56-57,     

60-61, 67-68 

 

A regression analysis was also performed between SPI and RDI under different 

scenarios which are shown from Fig. 4.46 to Fig. 4.48.  For the regression analysis, 

twelve month SPI values were compared with the annual RDI values.  The results 
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showed that SPI and RDI were well correlated in all the RCP scenarios.  The R² value for 

RCP4.5, RCP6 and RCP8.5 were found to be 0.931, 0.996 and 0.975 respectively.  From 

the R² value, it is concluded that both SPI and RDI index were well correlated and the 

drought intensity calculation using SPI and RDI were almost the same under all the             

RCP scenarios.  Significant correlation between SPI and RDI was also reported by             

Surendran et al. (2017) using DrinC software in Madurai district of Tamil Nadu.  In this 

study, RDI calculation was done using Hargreaves method to find PET due to limited 

data availability.  But SPI was calculated using the precipitation data.  SPI is the most 

widely used indicator which is a suitable index for agricultural as well as hydrological 

purposes.  Since this research mainly focus on the hydrological behaviour of the 

watershed, SPI indicator was selected for further analysis in the impact of climate change 

on drought intensity. 

 

Fig. 4.46 Regression analysis between SPI and RDI for RCP4.5 scenario 
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Fig. 4.47 Regression analysis between SPI and RDI for RCP6 scenario 

 

Fig. 4.48 Regression analysis between SPI and RDI for RCP8.5 scenario 
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4.2.9 Impact of climate change on drought intensity 

Future drought condition under different RCP scenarios was assessed by SPI from 

2021-2070.  Temperature and precipitation are the important factors expected to change 

as a result of global warming, and therefore an assessment of the possible impact of these 

changing climate conditions on drought is needed.  The bias corrected GFDLCM3 model 

data were used in this study to calculate the drought intensity under RCP4.5, RCP6 and 

RCP8.5 from 2021 to 2070.  For the convenience of the study purpose, the entire period 

of simulation was divided into two, 2021-40 and 2041-70.  The graphical representation 

of SPI under different scenarios from 2021-40 and 2041-70 is shown in Fig. 4.49 and Fig. 

4.50 respectively.  From the graph, it is found that the wet years are more than drought 

years for all the RCP scenarios for both the periods.  When comparing between scenarios, 

RCP 8.5 shows more drought period followed by RCP4.5.  

 

 

Fig. 4.49 SPI under different scenarios for the projected period from 2021-2040 
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Fig. 4.50 SPI under different scenarios for the projected period from 2041-2070 

To analyse the drought intensity and duration, number of drought occurrence 

under both the periods was studied separately which is shown in Table.4.13 and 

Table.4.14.  In all the scenarios from 2021-70, moderate droughts have a longer duration 

than the other drought categories, while extreme droughts have a shorter duration.  On the 
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From 2021-40, number of drought events under different scenarios were analysed 

and found that in case of RCP8.5 scenario, extreme drought condition will occur only 

once during the period 2031-32 and severe drought condition will occur three times for 

the periods 2021-22, 2025-26 and 2026-27.  No drought events were found under 

extreme and severe drought condition for both RCP4.5 and RCP6 scenarios.  It is found 

that, moderate drought condition will occur 4 times from   2023-28 for RCP4.5 scenario 

and once from 2039-40 for RCP8.5 scenario.  But in case of RCP6 scenario, no moderate 

drought condition was found since the projected precipitation data is higher than the 

observed period for RCP6 scenario.  

Table 4.13 Number of drought events and duration from 2021-40 under different 

scenarios using SPI 

SPI 4.5 6 8.5 

Extremely wet (>2) 0 

2 
(2030-31,     

39-40) 
0 

Very wet (1.5 to 1.99) 
1 

(2034-35) 
1 

(2032-33) 

3 

(2024-25,      

32-33, 35-36) 

Moderately wet  

(1 to 1.49) 

1 
(2033-34) 

2 

(2027-28,     

37-38) 

1 

(2023-24) 

Near normal  

( -0.99 to 0.99) 

13 

(2021-22, 22-23, 

24-32, 35-37,      

38-40) 

14 

(2021-27,     

28-30, 31-32, 

32-37, 38-39) 

10 

(2022-23,      

27-31, 33-35, 

36-39) 

Moderately dry  

(-1.49 to -1) 

4 

(2023-24, 30-31, 

32-33, 37-38) 
0 

1 

(2039-40) 

Severely dry 

 ( -1.99 to -1.5) 
0 0 

3 

(2021-22,      

25-27) 

Extremely dry (<= - 2) 0 0 
1 

(2031-32) 
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Table 4.14 Number of drought events and duration from 2041-70 under different 

scenarios using SPI 

SPI 4.5 6 8.5 

Extremely wet (>2) 
1 

(2063-64) 
0 

2 

(2043-44, 62-63) 

Very wet (1.5 to 1.99) 

3 

(2049-50, 58-59, 

64-65) 

1 

(2050-51) 
0 

Moderately wet  

(1 to 1.49) 

4 

(2047-48, 61-62, 

66-67, 69-70) 

1 

(2069-70) 

4 

(2044-45, 53-54, 

63-64, 65-66) 

Near normal 

 ( -0.99 to 0.99) 

17 

(2041-43, 46-47, 

48-49, 50-56,    

57-58, 59-61,    

62-63, 65-66,    

67-69) 

21 

(2041-44,     

45-48, 51-60, 

61-63, 64-68) 

18 

(2041-42, 45-47, 

49-53, 54-60,   

61-62, 64-65,   

66-67, 68-70) 

Moderately dry  

(-1.49 to -1) 

4 

(2043-46, 56-57) 

6 

(2044-45,     

48-50, 60-61, 

63-64, 68-69) 

2 

(2060-61, 67-68) 

Severely dry  

( -1.99 to -1.5) 
0 0 

3 

(2042-43, 47-49) 

Extremely dry (<= - 2) 0 0 0 

 

Number of drought events under different scenarios were analysed for 2041-70 

and found that there will be no extreme drought condition for all the RCP scenarios 

considered. Severe drought events will occur three times during 2042-43, 2047-48 and 

2048-49 for RCP8.5 scenario whereas no severe drought condition was found for both 

RCP4.5 and RCP6 scenarios.  Moderate drought condition will occur 4 times from    

2043-57 for RCP4.5 scenario and twice from 2060-68 for RCP8.5 scenario.  Moderate 

drought events are higher in case of RCP6 scenario and found that it will occur six times 

from 2044-69.  When comparing the time periods, it is clear that the severe and extreme 

drought events will decrease towards the end of simulation periods for all the RCP 

scenarios whereas moderate dry events will increase in case of RCP6 and RCP8.5 

scenario with a higher value for RCP6 scenario.  This increase is also found in case of 
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projected precipitation data for RCP6 scenario.  From these results, it can be concluded 

that the drought events is found to occur in periods where decrease in precipitation and 

increase in temperature is significant.  The extreme drought condition is high for RCP8.5 

scenario where temperature increase is higher than other scenarios.  But the number of 

drought occurrence will decrease towards the end periods of simulation since the increase 

in precipitation become more significant at the ends.  Chun et al. (2012) studied the 

drought characteristics in six catchments of UK and reported that the drought pattern in 

the future period will be less certain than the observed period of time.  This result 

provides insight into the possible droughts conditions in the future due climate change, 

which can be used to protect and manage water resources.  Sustainable measures for 

water management should therefore be planned to mitigate the future impacts of 

droughts.   

4.3 IMPACT OF CONSERVATION PRACTICES IN THE WATERSHED 

Watershed management, specifically Soil and Water Conservation (SWC), 

promotes sustainable livelihoods by reducing environmental degradation and increasing 

crop production since it increases infiltration and reduces erosion and at the same time 

maintains soil fertility.  Conservation practices are implemented in Kerala for augmenting 

surface as well as groundwater resources.  In order to conserve water resources and 

reduce soil erosion, studies on the conservation practices impact on river hydrology, 

particularly streamflow and sediment yield, are important.  Among the available models, 

SWAT (Soil and Water Assessment Tool) is found to be most common in simulating 

conservation practices at watershed scale.  The developed SWAT model was used in this 

research to study the impact of conservation practices on streamflow and sediment yield 

of Thuthapuzha watershed. The conservation practices selected for the study were Vented 

Cross Bar (VCB), check dam and brushwood dam.  All these structures were modelled as 

ponds separately for each subbasin and the model was run and the results were analysed 

to find the impact of conservation practices.  Other than these structures, Kanjirapuzha 

reservoir located within the watershed was also considered. In general, the impacts of 

conservation practices on streamflow and sediment yield were evaluated by running the 
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model with and without conservation practices and comparing streamflow and sediment 

yield in both cases.  

4.3.1 Impact of conservation practices on streamflow of Thuthapuzha watershed 

Generally, impact of conservation practices on hydrology is to delay or reduce the 

surface runoff thereby increasing the groundwater recharge.  In order to analyse the 

impact of conservation practices on streamflow of the watershed, the SWAT model was 

run by incorporating the effects of conservation practices and the results were compared 

with the model results without adding conservation practices.  The SWAT model defines 

reservoirs as water bodies located on the stream network, which receive loadings from all 

upstream subbasin at the subbasin outlet, whereas ponds and wetlands as water bodies 

located off the stream network, and do not receive loadings from other subbasins   

(Neitsch et al., 2002).  SWAT allows for one reservoir, one pond, and one wetland for 

each subbasin (Neitsch et al., 2002).  If there is a defined pond, wetland, and reservoir in 

a subbasin, the predicted runoff from each HRU shall be aggregated by first routing the 

runoff into ponds and wetlands followed by channel reach, and finally into the reservoir, 

irrespective of the location of the impoundments in the subbasin.   

For this study, the conservation practices considered were Vented Cross Bar 

(VCB), check dam, brushwood dam and a reservoir located at Kanjirapuzha.  Here, 

SWAT was used to model the Kanjirapuzha dam as reservoir component and the 

remaining structures as ponds.  The required input parameters for the pond and reservoir 

are volume of water and surface area at both the principal spillway and the emergency 

spillway.  The amount of water entering the water body throughout the day is estimated 

for the ponds as a fraction of the runoff provided by the user from all the HRUs within 

the subbasin, irrespective of their location in the subbasin.  Data needed for the 

conservation practices simulation was collected and summed up for each subbasin. The 

structures in the study area were collected separately for each tributary.  The location of 

the structures considered for the study separately for each tributary is shown in Fig. 4.51.   
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The details of conservation practices at each subbasin are given in Table. 4.15.             

The inputs used for reservoir component was also collected which is shown in         

Table. 4.16. 

 

 

Fig. 4.51 Map showing location of conservation practices of Thuthapuzha watershed 
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Table 4.15 Surface area and volume of conservation practices summed up at each 

subbasin outlet 

Subbasin Surface_area (ha) Volume (10⁴ m³) 

1 0.0001 0.0001 

2 0.0165 0.0465 

3 0.0478 0.0591 

4 0.0373 0.0624 

5 0.0035 0.0014 

6 0.0002 0.0001 

7 0 0 

8 0 0 

9 0.004 0.004 

10 0.0058 0.0066 

11 0 0 

12 0.0161 0.0442 

13 0 0 

14 0 0 

15 0.0112 0.0203 

16 0.0018 0.0028 

17 0 0 

18 0 0 

19 0.0004 0.0003 

20 0.0245 0.032 

21 0 0 

22 0.0172 0.0335 

23 0 0 

24 0.0097 0.0097 

25 0.0309 0.1515 

26 0.031 0.0706 

27 0 0 

28 0.0277 0.0686 

29 0 0 

30 0 0 

31 0 0 

32 0 0 

33 0 0 

34 0 0 

35 0.0314 0.0713 
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Table 4.16 Details of Kanjirapuzha dam needed as input to SWAT 

IYRES Year the reservoir become operational 1980 

RES_ESA 
Reservoir surface area when filled to 

emergency spillway (ha) 
505 

RES_EVOL 
Volume of water needed to fill the 

reservoir to emergency spillway(10⁴ m³) 
18135 

RES_PSA 
Reservoir surface area when filled to 

principal spillway(ha) 
401 

RES_PVOL 
Volume of water needed to fill the 

reservoir to principal spillway(10⁴ m³) 
17205 

 

In the developed SWAT model, the inputs for ponds and reservoir are given and 

the SWAT model was run.  Annual and monthly streamflow outputs were analysed.  In 

order to study the impact of conservation practices on streamflow, the streamflow values 

were compared with the results of SWAT model run without considering conservation 

practices. Comparison of annual and monthly streamflow simulated with and without 

structures for the period 1992-2017 is shown in Fig. 4.52 and Fig. 4.53 respectively and 

the average values are given in Appendix XVIII and XIX respectively.  Predicted annual 

streamflow simulation is showing an average decrease of 55 Mm³ in streamflow in all the 

years when conservation practices was added.  The annual streamflow is found to be 

decreasing with the implementation of conservation structures from 1992-2017.  Though 

there is a small decrease in the annual streamflow, the peak flow redistribution to summer 

months is of great importance. 

 Monthly streamflow simulated with and without structures was compared and 

found that the streamflow value increased largely during summer season with the effect 

of conservation structures from January to May whereas decreased slightly during rainy 

months. Large increase in the streamflow value with the implementation of conservation 

structures helps in maintaining a better environmental flow regime.  Percent increase in 

monthly streamflow with the addition of conservation practices was calculated and is 

shown in Fig. 4.54. From the graph, it is clear that percent increase in streamflow is high 

in the range of 9 to 17 percent from January to April and a small decrease of about        
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0.5 to 7 percent in flow was observed from June to October.  This redistribution of peak 

flow to summer months helps in increasing the groundwater recharge.  During summer 

season, generally very lean river flow occurs in the watershed which results in water 

scarcity especially for the downstream water users.  Such a situation can be avoided with 

the implementation of conservation practices.  Moreover, the conservation practices will 

delay or reduce the surface runoff thereby recharge to groundwater also increases.  Thus 

it is concluded that considering conservation practices in the watershed will be helpful for 

supporting the flow regime during summer season and decreases the flow regime during 

rainy season thereby a sustainable environment can be developed. 

 

Fig. 4.52 Predicted annual streamflow simulation with and without conservation 

structures 
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Fig. 4.53 Predicted monthly streamflow simulation with and without 

conservation structures 

 

Fig. 4.54 Percentage change in streamflow with and without structure 
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4.3.2 Impact of conservation practices on sediment yield of Thuthapuzha watershed 

The impact of conservation practices is to delay or reduce the surface runoff 

which results in decreased soil erosion.  Worldwide research shows that 80-90 percent of 

all sediments eroded per year from watersheds are trapped within river channels and 

impoundments, before it reaches the oceans, with a large percentage trapped within the 

reservoirs (Kondolf et al., 2014). The conservation practices thus play a major role in 

yielding the sediments at the watershed outlet.  Thus, studying the impacts of 

conservation practices on sediment yield is of great significance.  Similar to the impact 

study of streamflow on conservation practices, SWAT model was run with and without 

the conservation practices and the sediment yield results were analysed. 

Sediment routing through the impoundment is calculated on the basis of the 

sediment mass balance equation in the SWAT model.  An important part of the sediment 

mass balance is the sediment removal by settling which depends on the volume of the 

impoundment and the amount of sediment delivered to the impoundment, which is 

calculated as a function of the sediment concentration in the impoundment.  Settling 

occurs when the concentration of sediment in the water body exceeds the concentration 

of equilibrium sediment defined by the user.  A thorough calibration is required for the 

estimation of equilibrium sediment concentration as it is very difficult to calculate 

(Jalowska and Yuan, 2018).  Impoundments will not discharge enough sediment if the 

value is set too low and the impoundments will become a source of sediment if the value 

is set too high (Neitsch et al., 2002).  Data related to sediment concentration is not 

available from any of the department for the study area.  Thus, the sediment 

concentration values were estimated by calibration process.  The calibrated model was 

run and the sediment concentration values of conservation practices and reservoir were 

changed accordingly and the simulated sediment yield was compared with the observed 

sediment yield at Pulamanthole gauging station of the watershed.  Comparison of 

calibrated output and observed output is shown in Fig. 4.55.  Scatter plot between 

observed sediment yield and simulated sediment yield is shown in Fig. 4.56.  From the 

graph it is clear that simulated and observed sediment yield are in good correlation.  Due 
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to the limitation of data availability, the calibrated model output was taken as the 

sediment yield of the Thuthapuzha watershed with the implementation of conservation 

practices. 

 

Fig.4.55 Comparison between observed and simulated sediment yield with 

structure 

 

Fig. 4.56 Scatter plot between observed sediment yield and simulated sediment 

yield with structure 
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In order to study the impact of conservation practices on sediment yield, SWAT 

model was run with and without considering the conservation practices and the results 

were analysed.  Comparison of annual and monthly sediment yield simulated with and 

without structures for the period 1992-2017 is shown in Fig. 4.57 and Fig. 4.58 

respectively and the average values are given in Appendix XX and XXI respectively.  

Predicted annual sediment yield simulation is showing a decrease in sediment yield for 

all the years goes up to 1 to 5 t/ha with conservation practices from 1992-2017.  With the 

addition of conservation practices, the sediment trapping occurs thus the sediment 

yielding at the outlet of the watershed decreases.  

 

Fig. 4.57 Predicted annual sediment yield with and without conservation 

structures 
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Fig. 4.58 Predicted monthly sediment yield with and without conservation structures 

Monthly sediment yield at the outlet was compared with and without considering 

the conservation practices which is shown in Fig. 4.58.  Sediment yield is found to be 

increasing slightly during the summer months (0.001 to 0.04%) from January to May 

with the addition of conservation practices.  Similar trend is also found in the streamflow 

simulation also and the sediment yield increase might be due to the increase in 

streamflow during summer months.  During peak flows, sediment yield is showing large 

decrease (0.2 to 1.3%) with the addition of conservation practices.  This decrease might 

be due to the sediment trapping of impoundments in the watershed resulting in less 

sediment yield at the outlet when compared to sediment yield without conservation 

practices.  The graph is showing similar trend as that of streamflow but the percent 

increase is different.  Percent change in sediment yield is shown in Fig. 4.59.   From the 
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slight increase was observed for the summer months.  It is therefore concluded that, in 

order to reduce the sediment loss of fertile soil by erosion during the peak periods, proper 

mitigation measures including conservation practices as well as its maintenance need to 

be adopted in time.  Moreover, it is found that conservation practices are playing an 

important role in conserving soil and water in a watershed.  

 

Fig. 4.59 Percentage change in sediment yield with and without structure 

With the use of a properly calibrated model, the objectives of the entire research 

work were accomplished.  The calibrated SWAT model was used to study both the 

streamflow and the sediment yield of the watershed.  The overall results have shown that 

the SWAT model can very well be used in studying the climate change impacts.  The 

capability of a well calibrated SWAT model in simulating conservation practices was 

also analysed and concluded that the SWAT model can be used effectively in 

conservation practice impact studies.  The results of the entire research work will give an 

insight to the hydrologists in arriving solutions for problems regarding climate change as 

well as watershed development activities in the study area. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Efficient land and water resources management is essential for the sustainable 

development of a watershed.  Water resource management is very important from a 

number of perspectives, such as developing and preserving water bodies for the future, 

protecting water bodies against pollution and over exploitation and preventing disputes.  

Water resource management and planning are becoming increasingly challenging every 

day as result of the uncertainties arising from climate change.  Alterations in the 

hydrological processes, in turn, will affect the availability and runoff of water and may 

therefore affect river flows.  Conservation measures can significantly modify the 

hydrological regime by altering the runoff pathways, as well as the temporal and spatial 

distribution of water availability.  Detailed hydrological information on the watershed 

and its subsequent management using conservation structures is needed for the future 

development and protection of water resources.   

Bharathapuzha, the second longest river in the state of Kerala is now facing 

significant threats to its survival due to many natural and man-made reasons.  

Climate change effects have modified the river flow pattern resulting in extreme rainfall 

during monsoon and severe drought during summer.  It is necessary to analyse the 

reasons for this river flow pattern.  Thus, a detailed study was carried out to understand 

the impacts of climate change and conservation practices on the Thuthapuzha subbasin of 

Bharathapuzha using the SWAT hydrological model. In order to analyse the impacts of 

climate change and conservation practices, SWAT based hydrological model was 

developed for the study area.  A well calibrated and validated model will be able to 

reproduce or predict different hydrological variables for the future scenarios.  The 

calibration of the model for the Thuthapuzha region was done taking care of the different 

parameters affecting the hydrology of the region.  The simulation period for calibration 

was 1989 to 2009 and for validation 2010 to 2017 data was used and the simulation was 

done on daily basis.  The initial period of three years (1989-1991) is taken as a warm-up 
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period.  In the SWAT-CUP uncertainty analysis, two indices, p-factor and r-factor, were 

considered.  During calibration, the p-factor and the r-factor were 0.77 and 0.64, and 

during validation, the p-factor and the r-factor were 0.85 and 0.56, respectively.          

Nash – Sutcliffe efficiency (NSE), coefficient of determination (R²), and Percent bias 

(PBIAS) were used to assess the model performance.  The R², NSE and PBIAS values 

were 0.88, 0.88 and-1.4 for the calibration period and 0.8, 0.8 and 5.4 for the validation 

period.  Overall model statistics have shown that streamflow simulation can be 

successfully performed in the Thuthapuzha watershed using the developed model.  Water 

balance components predicted by the model from 1992-2009 reveal that the major portion 

of the river flow is in the form of surface runoff (ranges between 29 to 51%) followed by 

ground water flow (23 to 31%).  A relationship between the rainfall and runoff was also 

analysed and a decreased trend was observed.  

Modelling of hydrological processes has proved to be an efficient tool for 

evaluating and predicting soil erosion to guide soil and water conservation practices 

under very different climatic, topographical, soil and management conditions (Pla, 2000).  

The lack of awareness of the impacts of conservation structures and insufficient 

economic assistance to implement them has also led to their low adoption rate      

(Gathagu et al., 2017).  A method for modelling a number of agricultural practices has 

already been developed by SWAT model, including changes in the application of 

fertilizers and pesticides, tillage, crop rotation, wetlands, ponds and dams.  But fewer 

researchers focused on the impact of conservation practices on watersheds using SWAT.  

In addition, there is no standard procedure to simulate conservation practices to date. 

Three main conservation structures in the study area viz., Vented Cross Bar 

(VCB), check dam and brushwood dam and Kanjirapuzha reservoir were selected for 

impact analysis.  From the literature review, it was found that check dams and VCB’s can 

be modelled as ponds and the reservoir can be modelled as dam in the SWAT model.  

Since the conservation practices chosen have similar functions as that of check dams, all 

three were modelled as ponds.  Thus, for each subbasin, the storage area and the volume 
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of all three conservation practices were summed up and given as a single pond at the 

outlet of subbasins in which it is located.  After modelling ponds and reservoir, the 

SWAT model output was compared with the output without considering structures and 

the impact of conservation practices on streamflow was studied.  Monthly streamflow 

simulated showed a large increase (9- 17%) during summer season from January to May 

when the river has a very lean flow whereas simulated annual streamflow decreased 

about 55Mm³ for all the years from 1992-2017 with the addition of conservation 

structures.  Large increase in the summer flows is due to the redistribution of peak flows 

with the addition of structures which helps in maintaining a better environmental flow 

regime.   

Conservation structures impact on sediment yield was also studied by comparing 

the outputs with and without the addition of structures.  Equilibrium sediment 

concentration is needed to study the sediment routing which is hard to calculate and 

requires thorough calibration (Jalowska and Yuan, 2018).  Thus, the sediment 

concentration values were estimated by calibration process. The calibrated output was 

assumed as the sediment yield with the addition of conservation structures.  Monthly 

sediment yield showed a slight increase (0.001-0.04%) during the summer months from 

January to May whereas sediment yield showed comparatively higher decrease          

(0.2-1.3%) during peak flows with the addition of conservation structures.  Predicted 

annual sediment yield simulation is showing a decrease in sediment yield for all the years 

goes up to 1 to 5 t/ha with conservation practices from 1992-2017.  In order to decrease 

the sediment loss of fertile soil by erosion during the peak periods, proper mitigation 

measures including conservation practices as well as its maintenance need to be adopted 

in time.  

The developed model was used to study the impacts of climate change on 

Thuthapuzha watershed.  Climate models are the basis for studying the impacts of climate 

change.  GFDL-CM3 climate model was selected which provides better simulation for 

the Indian condition.  The model data from CMIP5 dataset and CORDEX-SA dataset was 

collected and both the datasets were bias corrected and compared each other to select the 
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datasets for the climate change impact study.  Extraction and bias correction of data was 

done using CMhyd software.  Both the datasets were compared graphically and 

statistically and found that both datasets showed excellent correlation with the observed 

one with only a small decimal point variation.  Thus, RCP4.5 (low) and RCP8.5 (high) 

scenarios from bias corrected CORDEX-SA dataset and RCP6 (medium) scenarios from 

CMIP5 bias corrected dataset from 2021-2070 were selected.  Projected precipitation and 

temperature data were analysed and found that percentage increase in precipitation is 

predominant in RCP6 whereas as decrease in precipitation was found for RCP4.5 and 

RCP8.5 and the projected temperature showed an increase in trend for all the months 

from the observed data for RCP4.5 and RCP8.5 scenarios where as a decrease in trend 

was observed for RCP6 scenario.  

The climate model output was given to the developed SWAT model and the 

results were analysed to study the climate change impacts on streamflow.  Overall annual 

average streamflow for the entire simulation showed an increase under all RCP scenarios 

with predominant increase in RCP6 scenario (37-60%) followed by RCP4.5 (13-16%) 

and RCP8.5 (9-16%).  Monthly streamflow predicted during 2021-70 was compared with 

observed and it was found that the streamflow in RCP 4.5 showed almost similar trend in 

variation as that of observed with a slight increase in streamflow for all the months 

except July and October during 2041-70.  From 2021-70, the streamflow is found to be 

increasing from January to July and decreasing afterwards in RCP8.5.  But the peak flow 

is found to be higher than that of RCP4.5 from June to August.  Thus, in RCP8.5 it was 

found that during peak flows the climate will become wetter than that of current scenario.  

Moreover, during 2021-70 in RCP6 scenario, increase in streamflow was observed in all 

months except during December in the period from 2021-40.  Significant increase in 

streamflow was found during the end periods of simulation for all the scenarios taken for 

the study purpose.  Thus, necessary steps to be taken to mitigate the extreme events due 

to streamflow increase during future periods.  Predicted water balance component under 

different scenarios reveal that the outflow from the watershed is mainly in the form of 
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surface runoff, followed by ground water flow, evapotranspiration and lateral flow under 

all RCP scenarios similar to the observed period of time. 

Drought indices are widely used to evaluate the severity of the drought in a 

meaningful way.  Among the various drought indices, SPI and RDI were selected for the 

impact analysis of climate change on drought intensity using DrinC software.  Drought in 

the Thuthapuzha watershed for the observed period from 1989-2017 was analysed using 

both SPI and RDI index.  Twelve month SPI values for the historical period from      

1989-2017 showed that droughts were quite frequent during the 1999-2000, 2001-2003, 

2007-2008, 2011-2012 and 2016-2017 whereas annual RDIst value showed that droughts 

were quite frequent during 1995-1996, 1999-2000, 2001-2002, 2007-2008, 2011-2012 

and 2015-2017.  Predicted drought intensity using both the SPI and RDI index for the 

period 1989-2017 showed that severely dry events have occurred once during 2015-16 

when using SPI index.  Comparison between both the indices showed a similar trend with 

little variation in the drought period, and the overall number of drought occurrence was 

same.  To select the index for analysing drought intensity for the future period, a 

comparative study and regression analysis between SPI and RDIst under different RCP 

scenarios were done from   2021-2070 and found that both indices are well correlated and 

the drought intensity calculation using SPI and RDI were almost the same under all the 

RCP scenarios. 

Future drought condition under different RCP scenarios was assessed by SPI from 

2021-2070 and found that the wet years are more than drought years for all the RCP 

scenarios.  When comparing between scenarios, RCP8.5 shows more drought period 

followed by RCP4.5.  In all the scenarios from 2021-70, the duration of moderate 

droughts is longer than that of the other categories of drought, while extreme droughts are 

shorter.  On the other hand, moderate drought duration is less in RCP6 followed by 

RCP8.5 and RCP4.5.  In case of RCP8.5 scenario, extreme drought condition will occur 

only once during the period 2031-32 and severe drought condition will occur six times 

for the periods 2021-22, 2025-26, 2026-27, 2042-43, 2047-48 and 2048-49 whereas no 
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extreme and severe drought conditions were observed for RCP4.5 and RCP6.  This result 

provides insight into the possible drought conditions in the future due to climate change, 

which can be used to protect and manage water resources.  Sustainable measures for 

water management should therefore be planned to mitigate the future impacts of 

droughts.   

The research findings could be useful for water resource planning and 

management by providing a planning tool for local management authorities to establish 

sustainable adaptation options.  Climate change impact results were based on only one 

model. The results can be more accurately obtained with multiple models using multiple 

ensembles.  Thus, the studies should be done in a site specific manner following the same 

procedures and appropriate mitigation measures and management practices need to be 

taken.  The developed model can be used in the same area for further studies including 

management impact analysis, land use change impact assessment etc.  The capability of a 

well calibrated SWAT model in simulating conservation practices was also analysed and 

concluded that SWAT model can be used effectively in conservation practices impact 

related studies.  Since, sediment yield impact analysis was done through calibration using 

sediment concentration; the results may not be fully reliable.  Thus, if there is good 

availability of data regarding sediment concentration or by physical measurements, 

further studies can be done in accurately simulating sediment yield.  The results of the 

entire research work will give an insight to the hydrologists in arriving solutions for 

problems regarding climate change as well as watershed development activities 

specifically in the adoption of more conservation structures in the area. 
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Appendix I. Monthly average Precipitation (mm) of Pattambi during 1989-2017 

 

 

 

 

 

 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 0.00 0.00 1.00 87.80 92.60 844.80 438.00 254.60 239.80 295.30 46.80 0.00 

1990 1.00 0.00 0.00 16.60 386.20 530.00 730.00 308.10 33.60 446.30 99.50 0.00 

1991 35.60 0.00 0.00 137.00 75.00 879.80 993.90 497.40 110.90 456.00 67.80 0.00 

1992 0.00 0.00 0.00 37.20 89.80 799.60 788.20 469.90 244.30 318.50 238.50 0.00 

1993 0.00 54.70 2.40 9.30 163.60 734.80 699.10 314.10 47.00 297.20 113.90 7.20 

1994 0.00 0.00 32.10 249.60 66.10 825.50 1012.80 386.40 195.90 409.30 85.70 0.00 

1995 0.00 0.00 6.50 76.60 185.90 583.20 836.80 383.90 248.70 140.00 189.20 0.00 

1996 0.00 0.00 65.80 75.40 68.70 386.10 579.30 226.40 338.80 300.00 43.00 14.20 

1997 0.00 0.00 7.10 5.60 80.70 510.10 1194.30 453.60 236.60 230.90 273.70 72.00 

1998 0.00 0.60 0.00 40.20 134.20 679.00 590.70 397.30 448.30 316.80 44.10 37.30 

1999 0.00 0.00 0.40 37.80 467.20 757.00 788.80 150.60 39.80 278.30 29.90 0.80 

2000 0.00 9.50 0.00 56.40 47.40 602.60 327.00 518.20 146.10 197.60 82.30 52.86 

2001 0.00 51.60 0.00 155.30 142.00 791.20 497.80 225.80 162.50 239.80 143.90 0.00 

2002 0.00 0.00 2.70 57.90 222.60 471.90 376.40 422.70 51.60 376.30 70.80 0.00 

2003 0.00 90.60 62.60 182.40 19.8 503.60 403.60 232.40 81.00 354.60 44.80 19.20 

2004 0.00 0.00 4.10 105.00 463.30 689.70 337.10 486.00 122.20 305.20 42.60 0.00 

2005 21.00 45.00 0.00 238.20 101.40 567.60 736.60 271.80 471.70 121.10 126.20 112.90 

2006 0.00 0.00 36.10 16.70 396.60 690.40 470.90 431.20 500.60 352.90 133.90 0.00 

2007 0.00 0.00 0.00 53.90 184.80 728.20 1303.50 469.40 599.00 297.40 34.40 6.00 

2008 0.00 46.90 117.50 7.60 73.20 535.10 322.70 182.30 302.00 312.90 7.60 0.00 

2009 0.00 0.00 57.00 42.20 125.60 278.60 1070.20 198.20 222.60 143.60 323.40 0.00 

2010 0.00 0.00 0.00 114.50 130.50 681.20 572.50 273.40 174.10 430.90 245.10 10.50 

2011 0.00 20.00 21.00 172.20 108.40 759.00 456.90 452.10 388.60 229.70 147.00 0.00 

2012 0.00 0.00 0.30 104.40 42.50 459.70 297.80 489.30 220.20 234.90 74.60 6.20 

2013 0.00 79.50 55.20 0.00 19.80 934.30 895.90 262.30 242.60 155.20 104.60 0.20 

2014 0.00 0.00 0.00 23.80 167.40 423.00 623.70 608.40 238.20 360.70 78.30 0.00 

2015 0.00 0.00 0.40 139.40 203.90 435.50 429.60 201.40 229.40 317.80 194.20 101.50 

2016 0.00 0.00 0.00 0.30 191.70 480.60 344.60 120.20 92.80 59.60 4.10 34.30 

2017 0.00 0.00 42.30 1.60 190.60 550.50 354.40 412.90 291.20 64.20 101.70 35.40 
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  Appendix II. Monthly average Precipitation (mm) of Mannarkkad during 1989-2017 

 

  

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 0.00 0.00 8.54 70.10 77.54 531.13 404.59 180.23 173.58 235.69 59.07 13.25 

1990 20.65 0.00 7.50 32.80 287.55 464.46 609.48 263.77 40.09 328.20 81.65 0.00 

1991 0.00 0.00 3.80 66.60 60.40 782.40 678.00 255.00 78.00 329.80 55.20 0.00 

1992 0.00 0.00 0.00 63.00 132.00 330.60 385.10 423.40 227.20 87.00 73.00 0.00 

1993 0.00 27.00 4.00 5.00 83.50 257.50 414.60 246.00 15.00 252.00 17.00 5.00 

1994 13.00 10.00 13.00 74.00 28.00 233.00 563.70 274.10 144.90 521.30 67.00 0.00 

1995 11.00 0.00 17.00 61.00 195.40 550.50 756.00 567.00 186.50 313.30 185.00 0.00 

1996 0.00 0.00 9.00 399.00 25.00 457.00 585.60 234.20 384.40 452.00 86.00 66.00 

1997 0.00 0.00 59.00 0.00 135.40 401.00 1112.00 277.00 230.00 304.00 430.80 33.00 

1998 0.00 0.00 65.20 40.00 161.00 702.20 609.00 511.10 281.10 380.10 254.00 75.40 

1999 0.00 42.80 0.00 12.30 230.40 290.70 642.00 145.00 77.00 765.00 15.00 0.00 

2000 0.00 9.40 13.00 157.00 79.00 533.00 240.00 403.30 305.00 248.90 132.00 0.00 

2001 3.00 43.00 0.00 341.00 97.00 401.00 408.00 243.40 191.00 279.00 391.00 0.00 

2002 0.00 0.00 40.70 59.00 282.00 240.00 187.50 451.00 82.00 578.00 76.00 0.00 

2003 0.00 11.00 66.30 148.00 126.00 476.00 396.00 202.00 37.00 415.00 29.00 0.00 

2004 1.00 0.00 43.00 107.00 440.00 597.00 298.30 383.00 150.70 295.20 87.00 0.00 

2005 25.00 0.00 15.00 320.00 79.00 931.00 1036.00 270.00 494.00 355.00 214.00 78.00 

2006 4.00 0.00 37.00 131.00 646.10 504.00 504.00 352.00 684.00 393.00 181.70 0.00 

2007 0.00 2.00 0.00 136.00 275.00 818.00 1040.00 629.80 530.10 313.00 70.00 16.00 

2008 0.00 27.00 286.00 20.90 49.70 526.80 329.30 250.70 303.70 407.70 8.20 0.00 

2009 0.00 0.00 98.00 55.20 145.50 374.20 817.10 268.70 291.80 235.90 245.50 96.80 

2010 0.00 0.00 18.80 200.80 198.80 715.20 418.80 307.20 202.20 685.60 521.60 6.20 

2011 0.00 63.20 1.60 144.90 89.60 791.60 394.20 369.60 435.80 412.00 176.30 2.40 

2012 0.00 0.00 22.00 201.40 94.80 380.40 301.80 376.10 127.90 221.60 65.10 4.20 

2013 0.00 2.10 27.40 9.00 144.20 680.90 684.30 237.20 529.40 292.50 77.80 5.80 

2014 0.00 6.20 29.00 45.60 144.50 358.50 820.80 589.60 302.60 494.40 45.40 29.70 

2015 0.00 0.00 4.20 177.00 305.30 561.70 190.40 197.70 230.90 164.80 309.40 25.20 

2016 0.00 0.00 0.00 28.80 204.10 658.20 423.90 87.60 40.60 132.30 37.80 23.00 

2017 0.00 0.00 102.70 12.30 146.60 441.10 259.00 489.70 829.60 207.50 1.80 81.00 
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     Appendix III. Monthly average Maximum temperature (°C) of Pattambi during       

1989-2017 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 34.49 36.36 36.95 36.02 34.19 30.01 29.74 29.79 30.16 30.89 32.42 33.05 

1990 33.48 35.00 36.17 35.99 32.49 30.06 29.01 29.35 31.37 32.43 31.72 32.54 

1991 33.54 35.61 36.82 35.57 34.84 29.89 29.46 29.23 31.73 31.07 31.70 32.19 

1992 32.76 34.58 37.03 36.56 34.05 30.59 29.04 29.04 30.36 30.79 31.66 31.49 

1993 42.45 34.51 35.53 36.42 34.85 30.45 29.12 29.47 31.05 31.23 31.60 31.56 

1994 33.31 34.54 36.84 34.43 34.45 29.44 28.64 29.67 31.26 31.63 31.87 32.25 

1995 32.92 34.85 36.76 36.16 32.77 30.89 28.75 29.61 30.51 32.14 31.62 32.48 

1996 33.45 34.87 36.74 34.59 34.08 31.11 29.47 29.57 29.59 30.73 32.30 31.74 

1997 32.79 34.74 36.31 36.10 34.94 31.41 28.82 29.24 31.50 32.41 32.10 32.28 

1998 33.65 34.41 36.36 36.45 34.90 30.41 29.36 29.98 29.42 29.67 31.60 31.11 

1999 32.81 35.18 35.96 33.84 30.81 29.89 28.41 30.05 31.69 30.68 31.79 32.14 

2000 33.85 34.21 36.03 34.81 34.38 29.49 29.93 29.04 30.65 30.66 32.03 31.25 

2001 33.11 34.31 35.20 34.41 32.99 29.33 29.27 29.53 31.61 31.15 31.82 31.87 

2002 33.15 34.89 37.01 35.54 32.19 30.04 30.12 28.85 31.57 31.04 32.00 32.84 

2003 33.27 35.16 35.18 34.76 33.73 31.11 29.82 30.14 31.23 31.17 31.87 32.65 

2004 33.58 35.55 36.69 34.70 30.18 29.75 29.30 29.45 30.91 31.31 31.98 32.98 

2005 33.78 35.35 36.26 34.01 34.06 30.50 28.98 29.76 29.77 31.32 31.53 32.18 

2006 33.53 34.90 35.34 35.14 33.16 30.34 29.63 30.14 29.92 30.99 31.54 32.10 

2007 33.13 34.65 36.49 36.37 33.84 30.20 28.26 29.62 29.41 30.52 32.09 32.12 

2008 32.79 34.02 33.78 34.16 33.84 30.10 29.72 30.22 30.49 31.77 32.55 32.29 

2009 32.82 33.23 33.75 34.08 33.04 30.48 28.20 29.50 29.65 31.60 31.77 32.47 

2010 33.72 35.78 37.10 35.65 33.95 30.79 29.55 29.41 30.66 30.47 30.70 30.99 

2011 33.12 34.34 35.56 34.55 33.66 29.84 29.43 29.64 30.17 32.14 31.52 32.44 

2012 32.95 35.41 35.60 35.28 33.56 30.61 29.95 29.25 30.59 32.40 32.01 33.19 

2013 34.44 35.10 36.01 35.75 34.93 28.96 28.72 29.83 30.36 30.97 32.39 31.96 

2014 33.25 35.02 37.19 36.07 34.11 31.49 29.98 29.60 31.19 28.24 31.43 32.65 

2015 33.18 34.79 35.88 33.40 32.95 31.20 30.50 31.00 31.80 32.45 32.04 32.54 

2016 33.13 34.95 36.92 36.99 34.17 30.14 29.78 30.51 30.26 31.46 33.04 32.67 

2017 34.13 35.80 35.78 35.75 34.46 29.65 30.17 29.71 30.91 31.24 32.18 31.87 
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      Appendix IV. Monthly average Maximum temperature (°C) of Pulamanthole during 

1989-2017 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 33.18 36.79 38.23 36.42 34.21 29.60 29.24 29.35 30.23 30.90 32.10 32.11 

1990 33.18 35.05 37.16 36.22 31.76 28.77 27.35 28.11 30.72 30.87 28.85 30.53 

1991 32.98 36.89 37.74 35.73 35.60 30.02 30.06 30.10 33.90 31.34 32.32 32.53 

1992 34.05 35.16 37.06 37.35 34.95 30.27 29.24 29.24 30.70 30.89 32.08 33.00 

1993 34.27 35.32 36.21 36.75 35.55 31.50 28.77 30.05 31.72 31.34 32.63 32.55 

1994 34.11 35.86 37.48 35.28 35.16 28.78 28.03 29.90 31.83 31.87 33.43 33.79 

1995 34.37 36.43 37.65 37.82 34.18 31.03 28.74 28.81 29.18 30.45 29.02 28.53 

1996 29.47 31.69 33.94 32.63 32.50 30.12 28.37 29.31 29.20 29.10 29.27 27.66 

1997 28.84 30.93 33.19 33.52 32.89 30.33 27.95 28.29 29.78 30.08 29.25 29.34 

1998 29.23 31.80 33.73 34.82 33.66 29.18 28.29 28.95 27.88 28.05 28.67 28.00 

1999 28.89 31.45 33.61 32.92 30.10 29.08 27.53 28.73 30.13 29.65 28.98 28.73 

2000 30.19 31.00 33.39 32.90 32.98 28.98 29.10 28.71 29.73 28.76 29.00 28.00 

2001 29.68 30.89 32.77 33.02 31.58 27.95 28.35 28.02 29.48 28.71 28.60 28.44 

2002 29.52 31.50 33.26 33.47 31.87 29.13 29.05 28.24 30.38 29.10 29.48 27.81 

2003 29.53 31.20 31.85 32.50 32.50 30.02 28.03 28.84 30.08 29.56 29.62 28.79 

2004 30.58 32.16 34.61 33.23 29.61 28.27 28.65 29.08 29.43 29.81 28.97 29.15 

2005 31.06 32.21 34.84 32.52 34.08 29.58 28.34 29.77 29.43 29.82 29.42 29.18 

2006 30.47 32.30 33.69 34.22 32.79 29.90 28.61 29.00 29.12 29.03 29.52 29.34 

2007 30.19 32.02 34.89 35.23 33.37 29.63 27.56 28.52 28.17 29.15 29.15 29.56 

2008 29.82 31.81 33.69 36.22 35.68 31.73 30.78 31.40 31.43 31.68 31.88 31.42 

2009 31.98 34.46 35.94 36.25 35.18 32.33 29.15 31.42 30.92 32.15 31.52 31.24 

2010 31.98 34.68 37.39 36.92 35.79 32.07 30.48 31.08 31.57 30.53 30.17 29.65 

2011 31.21 33.14 36.05 35.57 35.74 31.38 29.48 28.94 28.58 30.24 29.27 29.26 

2012 29.31 31.50 32.66 33.00 32.61 29.57 29.37 28.81 29.40 31.24 30.80 31.53 

2013 32.63 34.63 36.42 36.35 35.15 28.32 28.16 29.48 30.17 30.95 31.82 31.97 

2014 33.58 20.52 37.11 35.88 33.35 30.55 28.56 28.69 30.05 30.71 30.57 29.47 

2015 30.76 32.91 34.60 33.78 31.92 29.17 29.16 30.05 30.33 30.06 30.12 30.71 

2016 31.81 33.31 35.00 35.80 33.29 28.65 28.37 29.24 29.40 29.84 30.57 30.69 

2017 32.03 34.52 34.73 34.57 33.65 28.88 28.79 28.71 29.40 29.52 30.67 30.56 
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Appendix V. Monthly average Minimum temperature (°C) of Pattambi during           

1989-2017 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 19.17 18.63 21.62 24.92 24.98 22.64 23.24 22.84 22.85 22.97 21.57 21.05 

1990 17.31 17.51 19.01 20.97 20.37 19.17 20.03 22.70 23.44 23.34 22.18 21.92 

1991 20.28 20.15 24.33 24.76 25.35 23.39 22.46 22.34 23.12 22.88 21.78 19.58 

1992 18.76 20.84 21.83 23.73 23.95 22.65 22.17 28.86 22.35 21.84 21.54 19.47 

1993 18.70 20.49 22.76 24.03 23.96 22.93 22.04 22.45 22.00 22.26 21.27 20.02 

1994 19.77 19.90 21.29 22.13 22.75 21.20 20.33 20.88 20.47 20.66 20.15 19.39 

1995 20.73 22.28 22.87 24.33 23.69 23.29 22.29 22.76 22.40 22.14 21.36 17.71 

1996 18.47 19.60 21.17 23.50 24.03 23.49 22.33 22.36 22.54 21.67 21.45 19.57 

1997 18.95 18.75 21.57 23.13 24.58 23.64 22.98 23.32 23.50 23.33 23.41 23.06 

1998 22.00 22.29 36.18 26.02 25.82 23.62 23.47 23.79 23.36 23.00 22.73 21.18 

1999 19.08 21.56 23.55 23.90 23.73 23.12 22.74 23.38 23.27 23.44 22.18 21.33 

2000 21.69 22.09 23.47 24.93 24.55 23.03 22.75 22.52 23.06 22.23 21.32 18.93 

2001 21.17 22.06 23.25 24.14 23.65 22.78 22.47 22.67 23.27 23.23 22.54 20.74 

2002 21.15 21.59 23.84 24.90 24.12 22.63 23.40 23.25 23.22 23.67 23.07 19.72 

2003 21.06 22.94 24.05 24.51 25.78 23.90 23.41 30.79 23.28 23.58 22.49 20.35 

2004 20.81 21.27 23.73 25.08 24.20 23.49 23.53 23.20 23.57 23.23 22.14 21.00 

2005 20.66 20.84 23.86 24.26 24.62 23.66 23.32 23.18 23.31 23.60 22.45 20.80 

2006 21.04 20.57 23.35 24.61 24.72 24.09 23.47 23.48 23.42 23.44 23.18 21.17 

2007 20.22 21.02 23.89 24.71 24.64 24.08 23.45 23.40 23.64 23.22 21.48 21.03 

2008 19.67 21.72 22.14 24.87 24.94 23.69 23.74 23.90 23.29 23.42 22.82 20.22 

2009 22.00 23.51 24.97 26.06 25.18 23.92 22.62 23.51 23.69 23.90 24.02 23.75 

2010 21.42 22.86 24.21 25.29 25.66 24.24 23.51 23.65 23.63 23.45 23.15 21.09 

2011 20.78 19.81 23.20 24.28 24.75 23.77 23.35 23.46 23.33 23.58 21.98 21.03 

2012 20.01 21.14 23.89 25.01 25.48 24.13 23.87 23.78 23.66 23.65 22.30 21.70 

2013 20.67 22.65 24.06 25.51 25.87 23.81 23.30 23.75 23.70 23.44 23.07 20.31 

2014 21.27 21.18 23.05 25.35 24.96 24.33 23.27 23.26 23.24 26.25 23.07 21.79 

2015 20.20 20.94 23.50 23.80 21.87 20.95 23.49 23.70 23.74 23.99 23.40 22.52 

2016 21.41 22.30 24.97 26.50 25.18 23.88 23.83 23.88 23.56 23.14 22.58 21.47 

2017 20.93 21.58 23.52 25.46 24.70 23.69 23.10 23.77 23.58 23.44 22.65 20.96 
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Appendix VI. Monthly average Minimum temperature (°C) of Pulamanthole during 

1989-2017 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 19.98 19.66 22.23 20.32 24.55 22.18 22.89 22.60 22.93 23.06 21.62 21.15 

1990 18.92 20.30 22.63 25.48 23.65 22.68 21.84 22.31 23.07 22.94 21.75 20.56 

1991 19.89 19.98 23.84 24.05 25.19 23.28 22.15 22.15 22.77 19.05 21.95 19.23 

1992 18.03 20.85 22.06 23.90 24.08 23.00 22.23 22.39 22.52 22.48 22.10 21.03 

1993 17.79 19.82 22.56 24.12 24.16 23.07 22.08 22.81 22.85 22.63 22.02 20.85 

1994 19.77 20.79 22.44 23.63 24.39 22.43 21.74 22.45 22.47 22.19 21.62 19.23 

1995 19.73 21.54 22.58 24.02 23.71 23.52 23.34 25.92 25.50 25.87 24.83 22.45 

1996 23.42 24.64 26.97 27.62 27.90 25.60 24.76 24.85 25.33 24.68 24.85 22.85 

1997 23.56 24.27 26.73 27.98 27.68 26.48 24.15 24.55 25.23 24.84 24.60 25.31 

1998 24.29 25.45 27.35 29.65 28.56 26.22 25.16 25.35 25.27 25.11 25.12 23.74 

1999 22.53 24.55 26.61 27.05 25.81 25.00 24.81 25.65 26.03 25.55 24.57 23.89 

2000 24.02 23.98 26.10 26.97 27.50 25.15 24.98 24.81 25.60 24.60 24.37 22.03 

2001 23.79 24.71 26.61 27.05 26.98 24.80 24.76 24.89 25.48 25.15 25.03 23.55 

2002 23.94 24.91 27.18 27.63 27.11 25.62 25.23 24.27 25.43 25.48 25.38 23.79 

2003 23.65 25.04 26.50 27.38 28.10 26.18 24.39 25.48 25.75 25.47 24.78 23.06 

2004 23.60 24.69 26.94 27.08 25.92 25.12 24.77 24.65 24.93 24.94 24.58 22.58 

2005 23.32 24.45 26.55 26.90 27.77 25.27 24.16 24.61 24.47 24.56 23.95 22.58 

2006 22.56 22.52 25.50 26.97 26.05 24.65 24.10 24.45 23.97 24.42 24.33 22.42 

2007 22.40 23.23 26.32 27.03 26.82 24.82 23.66 24.15 23.92 24.02 22.93 22.82 

2008 21.56 23.98 24.29 26.82 26.53 24.78 24.82 24.85 24.68 25.10 24.52 22.68 

2009 22.68 24.02 26.37 27.20 26.97 25.78 24.05 25.39 25.55 25.58 25.12 24.00 

2010 23.65 24.54 26.84 27.17 27.56 25.77 24.37 24.89 25.33 24.84 24.30 23.06 

2011 22.60 22.80 25.74 26.38 26.68 24.48 25.45 25.55 25.68 26.61 25.33 24.45 

2012 23.97 25.33 27.47 28.03 28.29 26.28 26.05 25.94 24.53 22.31 21.05 20.90 

2013 20.55 21.02 23.18 24.43 24.65 22.27 21.84 22.56 22.40 21.87 22.22 20.82 

2014 20.61 34.71 22.68 24.82 24.73 23.67 22.37 22.31 22.72 22.56 22.08 21.47 

2015 21.37 21.32 22.82 23.82 22.98 23.08 22.92 22.82 23.07 23.19 22.60 21.94 

2016 20.60 21.62 24.31 25.43 24.23 23.30 22.76 23.13 23.07 22.87 22.20 21.05 

2017 20.08 21.36 23.24 25.22 24.39 23.52 22.87 23.29 23.35 23.39 22.58 21.34 
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Appendix VII. Monthly average Relative humidity (%) of Pattambi during 1989-2017 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 0.65 0.60 0.61 0.67 0.74 0.86 0.85 0.97 0.84 0.82 0.71 0.65 

1990 0.68 0.63 0.66 0.69 0.80 0.86 0.86 0.85 0.77 0.78 0.79 0.67 

1991 0.65 0.58 0.65 0.70 0.85 0.93 0.94 0.94 0.77 0.82 0.74 0.65 

1992 0.55 0.63 0.60 0.67 0.75 0.83 0.86 0.86 0.82 0.81 0.78 0.63 

1993 0.58 0.60 0.65 0.66 0.72 0.85 0.85 0.83 0.79 0.80 0.73 0.68 

1994 0.60 0.61 0.62 0.74 0.70 0.86 0.88 0.82 0.79 0.79 0.70 0.60 

1995 0.60 0.63 0.60 0.66 0.76 0.85 0.87 0.86 0.83 0.78 0.79 0.67 

1996 0.60 0.57 0.61 0.73 0.72 0.81 0.86 0.86 0.85 0.82 0.77 0.70 

1997 0.65 0.64 0.62 0.67 0.70 0.80 0.82 0.87 0.82 0.78 0.79 0.73 

1998 0.62 0.63 0.66 0.68 0.74 0.86 0.87 0.84 0.86 0.84 0.77 0.70 

1999 0.62 0.59 0.65 0.71 0.81 0.84 0.87 0.82 0.76 0.80 0.72 0.62 

2000 0.56 0.62 0.61 0.70 0.69 0.85 0.83 0.86 0.80 0.83 0.72 0.65 

2001 0.61 0.70 0.67 0.73 0.76 0.86 0.85 0.83 0.79 0.82 0.76 0.67 

2002 0.61 0.70 0.67 0.73 0.76 0.86 0.85 0.83 0.79 0.82 0.76 0.67 

2003 0.54 0.62 0.67 0.73 0.74 0.82 0.86 0.83 0.78 0.82 0.71 0.65 

2004 0.59 0.54 0.62 0.71 0.84 0.84 0.84 0.84 0.81 0.79 0.70 0.61 

2005 0.62 0.61 0.64 0.74 0.74 0.85 0.89 0.82 0.85 0.83 0.78 0.73 

2006 0.63 0.54 0.67 0.69 0.74 0.84 0.86 0.83 0.84 0.82 0.76 0.63 

2007 0.61 0.60 0.64 0.68 0.74 0.85 0.89 0.85 0.86 0.82 0.70 0.64 

2008 0.63 0.65 0.67 0.70 0.70 0.84 0.83 0.81 0.81 0.78 0.74 0.65 

2009 0.62 0.62 0.65 0.69 0.72 0.84 0.86 0.83 0.84 0.80 0.72 0.64 

2010 0.61 0.61 0.64 0.68 0.71 0.83 0.85 0.82 0.83 0.79 0.71 0.63 

2011 0.63 0.65 0.66 0.71 0.69 0.83 0.83 0.81 0.81 0.78 0.74 0.65 

2012 0.61 0.58 0.67 0.69 0.74 0.83 0.83 0.85 0.81 0.76 0.74 0.65 

2013 0.64 0.59 0.63 0.73 0.76 0.86 0.85 0.83 0.79 0.82 0.76 0.67 

2014 0.75 0.85 0.81 0.82 0.88 0.93 0.94 0.95 0.94 0.94 0.92 0.87 

2015 0.86 0.83 0.91 0.92 0.92 0.92 0.94 0.93 0.93 0.92 0.89 0.86 

2016 0.81 0.86 0.85 0.85 0.90 0.94 0.93 0.93 0.92 0.92 0.88 0.87 

2017 0.79 0.80 0.88 0.88 0.86 0.93 0.93 0.93 0.94 0.93 0.90 0.83 
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Appendix VIII. Monthly average Wind speed (m/s) of Pattambi during 1989-2017 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 1.39 1.16 0.90 1.50 1.39 1.09 1.54 1.47 1.00 0.77 1.24 2.21 

1990 1.74 1.75 1.37 1.37 1.17 1.03 0.95 1.53 1.46 0.87 0.79 2.00 

1991 1.62 1.47 1.35 1.19 1.08 1.02 1.17 1.14 1.23 0.78 1.13 1.61 

1992 2.22 1.14 1.21 1.30 1.15 1.22 1.10 1.01 0.92 0.49 0.83 2.37 

1993 1.69 1.80 1.26 1.16 1.23 0.94 1.10 1.33 1.03 0.66 0.91 1.58 

1994 2.08 1.18 1.35 1.00 1.27 1.12 1.01 1.17 1.04 0.63 1.51 0.98 

1995 0.70 1.68 1.28 1.21 1.09 0.91 1.01 1.07 1.14 0.75 0.24 1.65 

1996 1.51 1.55 1.15 1.02 1.13 1.09 0.92 1.21 0.94 0.60 0.70 1.30 

1997 1.42 1.03 1.19 1.17 1.19 0.66 0.56 0.01 0.76 0.75 0.71 1.19 

1998 1.83 1.56 1.13 1.23 1.10 0.93 1.17 1.01 0.83 0.69 0.66 1.29 

1999 1.58 1.44 1.08 1.44 1.03 0.96 1.12 1.18 1.04 0.59 0.98 1.87 

2000 2.07 1.15 1.17 1.39 1.53 0.68 0.72 0.87 0.73 0.39 0.73 1.11 

2001 1.37 0.77 1.01 0.80 0.98 0.87 0.99 1.17 1.10 0.90 0.92 1.93 

2002 1.71 1.88 1.38 1.26 1.28 1.17 1.00 0.83 0.86 0.59 0.86 1.48 

2003 1.82 1.14 0.96 0.83 1.14 0.84 0.71 0.90 0.89 0.44 1.54 1.34 

2004 1.62 1.29 1.24 1.04 1.09 1.16 1.04 1.44 0.98 0.90 1.30 1.71 

2005 1.34 1.34 1.23 0.97 1.01 0.83 1.05 0.99 0.92 0.57 0.82 0.94 

2006 1.85 1.79 1.23 1.28 1.43 0.93 1.16 1.05 0.89 0.82 1.05 2.37 

2007 2.00 1.57 1.24 1.25 1.19 1.06 0.93 1.05 0.82 0.86 0.91 1.78 

2008 1.72 1.17 1.33 1.07 1.30 0.94 1.08 1.13 0.93 0.88 0.81 1.75 

2009 1.98 1.32 1.22 0.83 1.07 0.77 0.66 0.62 0.61 0.67 0.90 1.70 

2010 1.52 1.39 1.16 0.98 0.90 0.72 0.69 1.00 0.81 0.57 0.74 1.10 

2011 1.37 1.18 1.18 1.01 0.96 0.63 0.53 0.58 0.46 0.47 0.71 0.95 

2012 1.21 1.22 0.97 0.94 0.95 0.52 0.77 0.58 0.48 0.55 0.50 1.27 

2013 1.16 1.34 1.00 0.95 1.10 0.74 0.70 1.05 0.74 0.64 0.77 1.15 

2014 1.67 1.34 1.23 0.86 0.83 0.73 0.75 0.64 0.74 0.52 0.69 1.10 

2015 1.51 1.54 1.57 0.72 0.57 0.65 0.72 0.75 0.58 0.46 0.84 1.47 

2016 1.66 1.06 0.93 0.86 0.80 0.58 0.71 0.88 0.90 0.51 0.63 1.01 

2017 1.52 1.58 0.94 0.92 0.93 0.84 1.18 1.47 1.24 0.75 0.94 2.09 
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Appendix IX. Monthly average Solar radiation (MJ/m²/day) of Pattambi during       

1989-2017 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1989 28.90 34.28 21.08 28.97 28.92 10.20 15.92 22.59 19.38 22.19 30.32 33.76 

1990 31.61 35.90 32.16 29.09 17.41 10.09 8.38 13.33 19.82 22.24 17.99 27.82 

1991 30.59 35.40 31.12 28.84 28.65 7.79 7.72 9.45 27.54 14.86 24.26 30.02 

1992 32.63 31.89 31.95 30.50 27.50 11.84 7.06 12.40 16.58 20.18 21.58 33.22 

1993 30.31 34.02 30.39 31.99 27.74 12.88 9.20 18.07 22.64 17.69 22.20 26.21 

1994 31.45 31.77 30.45 26.83 28.58 1.58 5.18 13.87 24.32 22.54 27.23 32.52 

1995 30.89 34.23 32.24 33.14 25.42 15.23 7.46 18.33 23.20 25.05 23.41 35.33 

1996 35.71 35.60 32.90 29.47 29.01 14.42 10.79 15.36 16.31 22.11 26.88 26.63 

1997 33.75 32.86 33.00 33.17 28.07 21.43 10.23 12.44 25.36 24.97 24.35 27.49 

1998 31.92 33.17 33.75 31.49 27.57 11.52 13.10 14.76 14.34 16.33 24.40 23.30 

1999 31.89 31.65 30.44 23.99 18.55 17.63 8.02 20.10 24.52 16.54 28.45 31.20 

2000 32.16 29.18 30.30 24.78 31.25 12.48 21.22 14.09 22.56 20.13 26.16 29.47 

2001 29.71 30.24 31.23 25.28 25.44 10.45 12.76 16.06 22.93 18.62 24.23 31.68 

2002 29.50 28.59 31.08 30.49 26.05 13.99 19.11 10.25 29.27 17.80 24.83 30.47 

2003 32.95 31.73 31.73 27.24 26.36 18.14 8.64 17.50 27.11 27.63 26.06 32.16 

2004 33.53 32.49 30.72 29.14 14.39 12.88 14.62 19.72 21.04 23.23 24.72 31.94 

2005 30.08 34.98 32.86 28.42 29.75 13.37 8.62 20.14 18.43 17.77 17.51 28.14 

2006 33.34 34.26 31.23 28.74 24.90 16.36 14.32 20.88 15.61 18.95 24.04 28.56 

2007 29.30 33.74 30.67 28.74 27.50 14.93 5.38 14.06 10.14 18.30 27.76 26.09 

2008 33.13 29.54 26.61 27.17 27.70 12.43 14.16 16.53 22.51 21.52 22.72 27.31 

2009 32.32 33.20 29.89 24.60 24.00 17.69 6.60 19.28 15.96 21.63 21.38 27.15 

2010 30.81 31.26 30.46 27.47 24.33 13.76 9.69 11.02 18.50 15.74 14.38 24.31 

2011 29.03 29.67 31.82 25.31 26.92 10.84 9.49 10.02 16.87 22.12 22.12 26.00 

2012 31.26 29.82 26.14 24.35 26.06 13.03 13.23 12.69 19.58 23.34 24.58 28.79 

2013 29.09 29.49 28.88 27.10 18.60 5.54 3.39 15.18 14.86 17.79 19.88 27.36 

2014 29.75 29.42 30.50 23.64 23.83 16.42 9.49 11.93 22.94 18.59 19.88 21.51 

2015 31.82 31.43 30.09 26.27 20.40 10.91 17.55 22.88 22.58 17.86 18.67 25.99 

2016 27.30 27.78 26.44 26.71 22.95 10.52 13.58 21.25 22.20 19.85 21.04 25.41 

2017 28.32 30.28 27.91 24.58 21.66 9.84 12.91 12.37 17.62 17.33 21.76 26.55 
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Appendix X. Monthly average discharge (m³/s) of Pulamanthole gauging station during 

1989-2017 

 

 

 

 

 

 

 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1992 4.57 1.54 0.42 1.70 4.15 106.96 283.32 226.66 119.58 91.31 65.70 15.12 

1993 6.19 4.09 2.99 2.09 7.89 55.37 148.80 137.09 42.90 114.37 34.11 11.65 

1994 5.73 2.56 1.39 7.66 3.95 108.62 332.27 114.55 80.86 118.95 75.46 11.49 

1995 5.51 2.43 1.74 2.37 14.83 49.45 181.70 138.15 134.15 50.29 70.76 11.05 

1996 3.62 2.22 1.29 6.90 4.49 64.30 133.26 100.60 116.30 128.31 31.86 15.41 

1997 5.68 3.16 2.12 3.02 2.91 18.10 276.65 177.67 88.39 55.22 91.96 27.40 

1998 7.86 3.34 1.81 1.80 5.24 62.48 188.57 180.91 144.05 130.91 67.18 17.20 

1999 6.11 4.64 2.20 2.75 22.37 153.73 191.43 131.93 22.50 152.09 34.50 14.04 

2000 3.93 2.27 1.05 3.35 2.37 64.39 72.81 120.90 78.12 99.77 18.02 15.26 

2001 4.82 3.69 1.52 9.26 6.89 129.77 135.25 90.88 47.92 80.36 90.12 14.38 

2002 6.18 2.77 2.76 3.83 10.96 58.61 39.57 108.29 18.49 102.80 36.01 8.79 

2003 3.09 3.19 5.56 4.35 4.63 34.62 69.17 54.00 22.24 46.89 14.25 6.66 

2004 2.49 0.93 0.77 1.86 38.80 133.85 90.02 143.81 51.52 70.89 27.93 8.77 

2005 2.36 2.06 0.58 10.44 4.40 68.69 257.03 122.96 133.74 80.12 51.46 22.02 

2006 4.70 1.85 2.88 4.59 52.28 123.75 163.19 127.32 182.39 117.58 77.24 11.57 

2007 4.50 3.51 3.31 3.87 7.01 101.99 393.43 187.87 189.16 102.85 43.09 8.18 

2008 3.46 2.99 12.46 5.14 3.59 52.14 92.16 99.58 95.92 92.94 26.69 7.83 

2009 2.18 0.00 0.74 0.00 2.92 18.79 286.40 84.23 120.55 78.60 60.06 11.91 

2010 4.10 2.41 2.71 5.07 5.84 82.61 160.56 131.82 99.52 134.58 156.86 24.82 

2011 8.01 3.42 3.08 12.52 5.40 183.97 145.21 159.30 187.94 72.87 67.51 12.68 

2012 4.79 2.96 1.72 6.57 4.43 36.55 64.97 96.77 79.12 33.16 18.21 6.19 

2013 3.14 1.04 1.27 0.59 1.69 160.85 254.16 133.08 134.13 62.63 23.52 10.52 

2014 2.27 2.37 1.71 0.72 0.00 36.24 154.34 224.59 134.98 149.94 36.87 9.58 

2015 2.19 1.40 2.32 4.07 16.08 84.14 78.84 48.72 35.73 39.94 43.71 14.03 

2016 3.57 3.64 0.92 0.76 3.21 63.75 104.30 41.95 18.50 12.62 8.88 3.36 

2017 1.29 0.00 0.00 0.00 0.28 30.73 60.39 93.87 245.96 75.13 17.26 8.96 
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Appendix XI. Annual Streamflow (Mm³) of Pulamanthole gauging station during     

1989-2017 

Year Streamflow (Mm³) 

1992 2452.28351 

1993 1501.995312 

1994 2287.882282 

1995 1745.628624 

1996 1618.455168 

1997 2002.95504 

1998 2146.872211 

1999 1946.377037 

2000 1282.777344 

2001 1623.322426 

2002 1051.831526 

2003 703.8962208 

2004 1514.684534 

2005 2007.173088 

2006 2298.409258 

2007 2774.479824 

2008 1298.388269 

2009 1779.178176 

2010 2155.133434 

2011 2257.971898 

2012 930.2487827 

2013 2079.727204 

2014 1997.399693 

2015 988.4029536 

2016 687.1636512 

2017 1401.062746 
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Appendix XII. Bias corrected data of precipitation for different scenarios 

 

Month 
RCP4.5 

2021-40 

RCP4.5 

2041-70 

RCP8.5 

2021-40 

RCP8.5 

2041-70 

RCP6 

2021-40 

RCP6 

2041-70 

Jan 12.68 30.53 8.34 12.32 28.23 65.78 

Feb 6.43 32.22 3.55 17.36 2.03 2.57 

Mar 33.37 50.58 24.19 64.98 43.50 57.06 

Apr 79.67 94.07 37.63 110.16 114.33 142.39 

May 162.01 217.74 155.04 232.54 230.37 417.83 

Jun 489.28 592.56 518.86 581.39 852.45 974.63 

Jul 464.85 535.24 449.80 567.92 524.43 712.00 

Aug 261.21 350.12 256.66 363.62 401.31 629.47 

Sep 210.36 220.41 195.45 205.72 232.35 399.94 

Oct 108.41 181.07 74.72 142.66 38.22 203.71 

Nov 63.73 126.80 71.22 99.30 172.75 181.39 

Dec 4.89 27.16 30.51 24.47 107.84 140.55 

 

 

   Appendix XIII. Bias corrected Maximum temperature (°C) data from 2021-70 under 

different scenarios 

 

 

 

 

 

 

 

Month RCP_4.5 RCP_8.5 RCP_6 

Jan 34.90 35.09 31.80 

Feb 35.79 35.90 33.54 

Mar 37.15 37.68 37.97 

Apr 36.28 36.41 38.37 

May 34.62 34.65 36.59 

Jun 31.62 31.66 32.40 

Jul 30.83 30.84 30.86 

Aug 30.64 30.50 30.93 

Sep 31.65 31.79 32.09 

Oct 31.98 32.21 32.21 

Nov 32.93 32.99 32.05 

Dec 33.33 33.26 31.04 
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Appendix XIV. Bias corrected Minimum temperature (°C) data from 2021-70 under 

 different scenarios 

Month RCP_4.5 RCP_8.5 RCP_6 

Jan 21.20 21.10 23.23 

Feb 21.60 21.61 23.61 

Mar 24.40 24.49 26.36 

Apr 25.02 25.13 27.29 

May 24.93 24.99 27.35 

Jun 23.78 23.97 26.12 

Jul 23.38 23.51 25.10 

Aug 24.49 24.65 25.93 

Sep 23.87 23.97 26.04 

Oct 23.68 23.66 26.21 

Nov 22.89 23.05 26.38 

Dec 21.79 21.91 23.69 

 

Appendix XV. Predicted annual streamflow under different scenario from        

2021-40 

Year RCP_4.5 RCP_8.5 RCP_6 

2021 3278.24 1319.93 2023.35 

2022 3242.58 742.66 2634.29 

2023 1434.45 2117.50 2106.06 

2024 880.71 3922.52 3640.07 

2025 1509.91 3368.33 3048.64 

2026 1244.79 785.96 2430.38 

2027 1918.06 834.27 2042.69 

2028 2201.49 1229.14 3252.63 

2029 1882.01 2065.38 2229.45 

2030 1121.98 1301.16 2536.46 

2031 1776.50 1447.91 3466.16 

2032 2081.34 571.84 2057.17 

2033 1077.61 3849.13 4093.65 

2034 3269.20 1283.55 2217.28 

2035 2774.13 1726.03 2957.75 

2036 2050.29 3534.74 2238.18 

2037 1292.49 2428.47 3359.37 

2038 1460.40 1448.18 3121.39 

2039 2179.75 2112.46 2016.84 

2040 2200.78 1128.28 3733.66 
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           Appendix XVI. Predicted annual streamflow (Mm³) under different scenario 

from 2041-70 

Year RCP_4.5 RCP_8.5 RCP_6 

2041 659.32 2030.11 3553.98 

2042 1669.52 1577.09 1999.61 

2043 1950.78 790.58 2418.35 

2044 1044.72 3718.80 2121.34 

2045 856.63 2698.40 1316.09 

2046 873.74 1123.17 2438.29 

2047 1551.65 2541.61 2825.19 

2048 2779.26 931.49 2456.31 

2049 1568.61 726.23 1193.47 

2050 2849.24 2521.31 2314.18 

2051 1352.92 1352.79 3567.66 

2052 1713.70 2022.60 3600.49 

2053 2026.93 1870.34 1964.01 

2054 1529.89 2830.78 2196.51 

2055 1899.72 1293.38 2341.23 

2056 2033.47 2404.99 2302.83 

2057 1028.38 1338.90 1888.38 

2058 2467.13 1628.31 2041.08 

2059 3106.07 1761.69 1804.84 

2060 1865.33 1881.01 1825.21 

2061 1908.89 1305.76 2615.23 

2062 2898.38 1654.23 2484.95 

2063 2138.85 3150.18 1934.86 

2064 3470.26 2795.00 1732.20 

2065 3216.00 2622.27 2926.88 

2066 1887.57 2692.27 2231.71 

2067 2684.96 2558.25 3224.03 

2068 2029.71 1096.72 1430.46 

2069 2404.77 2545.90 1951.25 

2070 2069.48 2043.54 3796.77 
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Appendix XVII. Predicted monthly streamflow (Mm³) under different scenario in 

comparison with observed from 2021-70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Month 
RCP_4.5 

2021-40 

RCP_4.5 

2041-70 

RCP_8.5 

2021-41 

RCP_8.5 

2041-70 

RCP_6 

2021-41 

RCP_6 

2041-70 

Jan 39.78 41.86 31.35 32.33 56.92 60.52 

Feb 20.31 21.11 15.76 18.90 33.31 54.62 

Mar 9.47 10.84 7.97 9.21 15.54 25.19 

Apr 35.35 36.60 19.98 33.24 38.40 55.98 

May 70.28 54.46 44.99 29.81 72.10 82.82 

Jun 299.66 370.18 425.73 478.07 545.94 615.87 

Jul 390.66 400.75 464.78 521.25 499.80 583.14 

Aug 345.75 346.94 319.36 347.93 370.39 410.06 

Sep 264.73 265.77 194.32 186.83 272.20 314.87 

Oct 237.57 203.52 160.82 152.67 250.40 286.49 

Nov 143.25 144.39 107.92 110.74 139.09 170.05 

Dec 87.03 88.11 67.87 62.63 55.82 100.65 
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 Appendix XVIII. Predicted annual streamflow simulation (Mm³) with and without  

                                                 conservation structures 

 

 

 

Year Without_structure With_structure 

1992 2129.37 2073.39 

1993 1679.72 1627.06 

1994 2339.85 2264.89 

1995 1797.92 1741.50 

1996 1341.85 1324.72 

1997 2163.74 2089.33 

1998 1972.51 1903.79 

1999 1892.53 1826.69 

2000 1300.41 1273.33 

2001 1621.83 1564.53 

2002 1337.13 1302.96 

2003 1139.63 1112.40 

2004 1787.70 1728.75 

2005 1902.31 1836.69 

2006 2254.35 2172.51 

2007 2942.07 2825.87 

2008 1218.13 1188.03 

2009 1696.77 1643.22 

2010 1798.27 1732.96 

2011 2067.92 1990.08 

2012 1305.81 1270.90 

2013 2062.60 1985.25 

2014 1863.43 1798.63 

2015 1432.48 1383.37 

2016 804.34 790.76 

2017 1370.52 1328.91 
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  Appendix XIX. Predicted monthly streamflow simulation (Mm³) with and 

without conservation structures 

 

 

  

Month With_structure Without_structure 

Jan 27.89 18.64 

Feb 17.27 3.26 

Mar 19.65 2.35 

Apr 20.03 4.19 

May 30.51 27.38 

Jun 311.79 318.57 

Jul 416.18 418.12 

Aug 286.53 287.12 

Sep 218.91 219.80 

Oct 206.39 206.93 

Nov 123.54 120.39 

Dec 60.66 57.11 
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Appendix XX. Predicted annual sediment yield (t/h) with and without 

conservation structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix XXI. Predicted monthly sediment yield (t/h) with and without 

conservation structures 

Year Without_structure With_structure 

1992 8.01 3.42 

1993 3.82 2.15 

1994 5.25 3.01 

1995 5.75 1.93 

1996 3.52 1.30 

1997 6.06 1.55 

1998 6.65 3.05 

1999 4.87 1.82 

2000 3.42 1.25 

2001 3.82 1.69 

2002 3.76 1.28 

2003 2.19 1.11 

2004 4.57 1.65 

2005 5.17 2.47 

2006 6.44 2.27 

2007 8.76 3.58 

2008 3.44 1.36 

2009 4.07 1.71 

2010 5.60 1.60 

2011 5.53 2.01 

2012 3.82 1.08 

2013 6.60 2.55 

2014 4.96 1.12 

2015 3.78 1.19 

2016 2.01 0.89 

2017 3.46 1.37 

Month With_structure Without_structure 

Jan 0.024 0.019 

Feb 0.015 0.009 

Mar 0.029 0.003 

Apr 0.060 0.041 

May 0.020 0.014 

Jun 0.568 1.848 

Jul 0.376 1.011 

Aug 0.332 0.770 

Sep 0.172 0.672 

Oct 0.133 0.338 

Nov 0.072 0.053 

Dec 0.062 0.045 
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ABSTRACT 

Hydrological models have been increasingly used for the impact assessment of 

climate change and management practices on hydrological processes.  In the 

Thuthapuzha watershed, where extreme events due to climate change and resulting 

changes in patterns of river flow predominate, proper management of water resources 

through soil and water conservation needs to be adapted in the future.  In this 

research, SWAT model was used to simulate hydrological processes on a daily     

time-step in Thuthapuzha watershed, subbasin of Bharathapuzha located in Kerala, 

India.  SWAT performs satisfactorily with Nash-Sutcliffe efficiency value (NSE) of 

0.88, coefficient of determination (R²) of 0.88 and Percent bias (PBIAS) of -1.4 for 

the calibration period (1989-2009) and R², NSE and PBIAS values of 0.8, 0.8 and 5.4 

respectively for the validation period (2010-2017).  The study concluded that the 

developed SWAT model can be used to predict streamflow from the watershed.        

So the developed model was then used for studying the impact of climate change and 

conservation structures on the hydrology of the watershed. 

Quantification of changes in the water balance and soil erosion over a long 

period of time is necessary for watershed management.  The developed SWAT model 

was used to understand the impact of conservation practices on hydrological 

processes.  Major conservation practices in the study area were modelled as ponds and 

Kanjirapuzha reservoir within the study area was modelled as dam.  The results 

obtained were analysed to study the impact of conservation structures on streamflow 

and found that monthly streamflow increased during summer season (9-17%) when 

the river has a very lean flow with the effect of conservation practices which helps in 

maintaining a better environmental flow regime.  Conservation structures impact on 

sediment yield was also analysed by comparing the outputs with and without the 

addition of structures.  In addition to the structural details, sediment yield analysis 

requires equilibrium sediment concentration value which is very difficult to estimate.  

Thus, a calibration process was again done for calibrating equilibrium sediment 

concentration using sediment yield output at the Pulamanthole gauging station 

(Jalowska and Yuan, 2018).  For the study, it was assumed that the sediment yield 

output obtained from the calibrated model as the sediment yield with the addition of 



structures.  Monthly sediment yield showed a slight increase (0.001-0.04%) during the 

summer months whereas sediment yield decreased (0.2-1.3%) during peak flows with 

the addition of conservation structures.   

Climate data are collected from CMIP5 and CORDEX-SA datasets of    

GFDL-CM3 climate model for RCP4.5, RCP6 and RCP8.5 scenarios and the bias 

corrected weather data were used as input in SWAT model.  Comparison of 

streamflow and drought intensity based on predicted climate change scenarios is 

evaluated.  The results of the future simulations of streamflow in SWAT reveal that, 

river flow increased under all RCP scenarios with predominant increase in RCP6 

scenario (37-60%) followed by RCP4.5 (13-16%) and RCP8.5 (9-16%) from       

2021-2070.  Significant increase in streamflow was found during the end periods of 

simulation for all the scenarios taken for the study purpose.  Results show the 

importance of climate change effect on water resources, where it does not have only 

an effect on precipitation and temperature, but the streamflow is also directly 

influenced by climate change.  Thus, necessary steps should be taken to mitigate the 

extreme events due to streamflow increase during future periods.   

In order to study the climatic condition in the Thuthapuzha watershed, drought 

intensity was calculated.  Drought intensity was predicted using the SPI and RDI 

index for the period 1989-2017 and found that severely dry events have occurred once 

during 2015-16 when using SPI index.  Comparison and regression analysis between 

both the indices showed that both were well correlated and similar trend with little 

variation in the drought period was observed.   Thus, SPI index was selected for 

studying the impact of climate change on drought intensity and found that the wet 

years are more than drought years for all the RCP scenarios with RCP 8.5 shows more 

drought period followed by RCP4.5 and RCP6.  For the projected period from     

2021-70, extreme drought condition will occur only once and severe drought 

condition will occur six times for RCP8.5 whereas no extreme and severe drought 

conditions were observed for RCP4.5 and RCP6. 

 



SWAT successfully achieved the aim of this research; to assess the impact of 

climate change and conservation practices in the Thuthapuzha watershed.  

Nevertheless, uncertainty cannot be avoided in this study since climate model datasets 

were used for making the future prediction.  The results of the entire research work 

will give an insight to hydrologists in solving climate change related issues as well as 

provides water resources managers with an effective tool for the integrated catchment 

management. 

 

 


