KERALA AGRICULTURAL UNIVERSITY

B. Tech.(Food Engg) 2016 Admission
 IV Semester Final Examination-July 2018

Basc. 2209 Numerical Methods for Engineering Applications (1+1)
Marks: 50
Time:2hours

I Fill up the following blanks:
1 In \qquad method the values of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots, \mathrm{x}_{\mathrm{n}}$ are obtained immediately without using back substitution.
2 Lagrange's interpolation formula is used only for \qquad intervals.
3 One dimensional heat equation is \qquad
4 The positive root of $f(x)=2 x^{3}-3 x-6=0$ lies between \qquad
5 Iterative formula of Newton's Raphson method is \qquad

State True or False

6 Newton-Raphson method is quadratically convergent.
7 Solution matrix of $\mathrm{AX}=\mathrm{B}$ by Gauss-elimination method is an upper triangular matrix.
8 Newton's forward interpolation formula is suitable to estimate the interpolations near the middle of the table value.
9 Modified Euler's method is the Runge-Kutta method of fourth order.
10 Error in the trapezoidal rule is of the order h^{4}.

II Write Short notes on any FIVE of the following
1 Define interpolation and extrapolation.
2 i) Write trapezoidal rule.
ii) Write Newton's backward difference interpolation formula.

3 Classify the PDE $f_{X x}-2 f_{x y}=0$.
4 Using Gauss elimination method solve $2 \mathrm{x}+\mathrm{y}=3$

$$
7 x-3 y=4
$$

5 Find relation between E and Δ
6 Form the divided difference table for the following data

x	1	2	4	7	12
$f(x)$	22	30	82	106	206

7
Evaluate $\int_{0}^{1}\left(\frac{1}{1+x^{2}}\right) \mathrm{dx}$ using Trapezoidal rule by taking interval $\mathrm{h}=\frac{1}{2}$

III Answer any FIVE of the following.
(5x4=20)
1 Solve the equation $x^{3}-2 x-5=0$ by Newton Raphson method.
2 Using Newton's forward interpolation formula find y at $x=8$ from the table:

x	0	5	10	15	20	25
y	7	11	14	18	24	32

3 Find the value of $\int_{1}^{2}\left(\frac{1}{5+3 x}\right) \mathrm{dx}$ using Simpson's rule.
4 Obtain the values of y at $x=0.1,0.2$ using R.K method of second order.
5 Solve $\frac{d y}{d x}=x+y$, given $y(1)=0$, and get $y(1.1)$ by Taylor series method.
6 Using Crank-Nicholson's method solve $\mathrm{u}_{\mathrm{Xx}}=16 \mathrm{u}_{\mathrm{t}}, 0<\mathrm{x}<1, \mathrm{t}>0$ given $\mathrm{u}(\mathrm{x}, 0)=0, \mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(1, \mathrm{t})=100 \mathrm{t}$. Compute u for one step in t direction taking $\mathrm{h}=\frac{1}{4}$.
7 Write short notes on classification of partial differential equation of second order.

IV Write Essay on ANY ONE

$(1 \times 10=10)$

1. Explain briefly Gauss elimination and Gauss Jordan Methods.
2. The following are data from steam table.

Temp ${ }^{\circ} \mathrm{C}$	140	150	160	170	180
Pressure $\mathrm{Kg} / \mathrm{cm}^{2}$	3.685	4.854	6.302	8.076	10.225

Using Newton's formula, find the pressure of the steam for a temperature of $142^{\circ} \mathrm{C}$.

