

П

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Engg) 2016 Admission IV Semester Final Examination-July 2018

Numerical Methods for Engineering Applications (1+1)

Marks: 50 Time:2hours

I Fill up the following blanks:

- Inmethod the values of x₁, x₂, ..., x_n are obtained immediately without using back substitution.
- 2 Lagrange's interpolation formula is used only for ----- intervals.
- 3 One dimensional heat equation is
- ⁴ The positive root of $f(x) = 2x^3 3x 6 = 0$ lies between
- 5 Iterative formula of Newton's Raphson method is State True or False
- 6 Newton-Raphson method is quadratically convergent.
- 7 Solution matrix of AX=B by Gauss-elimination method is an upper triangular matrix.
- 8 Newton's forward interpolation formula is suitable to estimate the interpolations near the middle of the table value.
- 9 Modified Euler's method is the Runge-Kutta method of fourth order.
- 10 Error in the trapezoidal rule is of the order h^4 .

Write Short notes on any FIVE of the following

- 1 Define interpolation and extrapolation.
- 2 i) Write trapezoidal rule.
- ii) Write Newton's backward difference interpolation formula.
- 3 Classify the PDE $f_{XX} 2 f_{XY} = 0$.
- 4 Using Gauss elimination method solve 2x + y = 3

$$7 x - 3 y = 4$$

- 5 Find relation between E and Δ
- 6 Form the divided difference table for the following data

х	1	2	4	7	12	
f(x)	22	30	82	106	206	

⁷ Evaluate $\int_0^1 \left(\frac{1}{1+x^2}\right) dx$ using Trapezoidal rule by taking interval $h = \frac{1}{2}$

P.T.O

(10x1=10)

(5x2=10)

III Answer any FIVE of the following.

- ¹ Solve the equation $x^3 2x 5 = 0$ by Newton Raphson method.
- 2 Using Newton's forward interpolation formula find y at x = 8 from the table:

x	0	5	10	15	20	25
у	7	11	14	18	24	32

3 Find the value of $\int_{1}^{2} \left(\frac{1}{5+3x}\right) dx$ using Simpson's rule.

- 4 Obtain the values of y at x = 0.1, 0.2 using R.K method of second order.
- 5 Solve $\frac{dy}{dx} = x + y$, given y(1) = 0, and get y(1.1) by Taylor series method.
- 6 Using Crank-Nicholson's method solve $u_{XX} = 16u_t, 0 < x < 1, t > 0$ given u(x,0) = 0, u(0,t) = 0, u(1,t) = 100t. Compute u for one step in t direction taking $h = \frac{1}{4}$.
- 7 Write short notes on classification of partial differential equation of second order.

IV Write Essay on ANY ONE

- 1. Explain briefly Gauss elimination and Gauss Jordan Methods.
- 2. The following are data from steam table.

Temp ° C	140	150	160	170	180
Pressure Kg/cm ²	3.685	4.854	6.302	8.076	10.225

Using Newton's formula, find the pressure of the steam for a temperature of 142°C.

(5x4=20)

(1x10=10)