KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food. Engg) 2013 Admission
 IV ${ }^{\text {th }}$ Semester Final Examination-June/July -2015

Cat. No: Basc. 2209
Title: Numerical Methods for Engineering Applications (1+1)
Marks: 50.00
Time: 2 hours
I Answer the following
$10 \times 1=10$

1. In Newton-Raphson method a root of $f(x)=0$ lies between a and b, if $f(a)$ and $f(b)$ are
2. Newton's formula converges if \qquad
3. In Gauss elimination method, the coefficient matrix is transformed to the form,
4. The Forward operator $\Delta y_{n}=$ \qquad
5. Iteration method is a
6. Taylor's series for a function at two variable is \qquad series
7. The process of computing the value of the function outside the given range is called
8. The condition to apply Jacobi's method to solve a system of equations is \qquad
9. The Simpson's three-eight rules. $Y(x)$ is polynomial of degree \qquad -
\qquad

II Write short notes on any FIVE questions

1. Iterative methods.
2. Newton's divided difference formula.
3. Crout's method
4. Classification of Partial differential equations
5. Horner's method
6. Central difference
7. Liebermann's iteration process.

III Write short notes on any FIVE questions

1: Evaluate $\sqrt{12}$ to four decimal places by Newton's Raphson method
2. Evaluate $\Delta(\log x)$
3. Give the Runge Kutta method of order Second and Third
4. Write truncation error in Trapezoidal rule.
5. Using R.K method of fourth order, find $y(0.8)$ correct to 4 decimal places, If $y^{\wedge}=y-x^{2}, y(0.6)=1.7379$.
6. Solve by Gauss Seidal and Gauss Jacobi methods $8 x-y+z=18 ; 2 x+5 y-2 z=3 ; x+y$
7. Solve $x-y+z=1,-3 x+2 y-3 z=-6,2 x-5 y+4 z=5$, by Gauss elimination mehod.

Answer any ONE of the following

$$
1 \times 10=10
$$

Solve $U_{x x}+U_{y y}=0$ in over the square mesh of side 4 units satisfying the following boundary . conditions,
$\mathrm{U}(0, \mathrm{y})=0, \quad 0 \leq y \leq 4$
$U(4, y)=12+y, \quad 0 \leq y \leq 4$
$U(\mathrm{x}, 0)=3 \mathrm{x}, 0 \leq x \leq 4$,
$\mathrm{U}(\mathrm{x}, 4)=\mathrm{x}^{2}, 0 \leq x \leq 4$,
(i) E.valuate $\int_{0}^{6} \frac{1}{1+x} d x$ Using (i) Trapezòidal rule (ii) Simpson's rule (both) by taking $\mathrm{h}=1$
(i) Find $y(2)$ from the following data

$x:$	3	4	5	6
$y:$	6	24	60	120

