KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food.Engg) 2012 Admission
 IV ${ }^{\text {th }}$ Semester Final Examination- July -2014

Cat. No: Cien. 2204
Marks: 80
Title: Mechanics and strength of Materials (2+1)
PART A
I. Fill up the blanks

$$
(10 \times 1=10 \text { marks })
$$

1. The forces that meet at one point are known as. \qquad forces.
2. The C.G of a semi circular lamina is at a distance of \qquad from its centre.
3. The efficiency of a screw jack can be increased by \qquad
4. The reaction may be horizontal, vertical or inclined depending upon loading in the case of \qquad support.
5. A perfect frame satisfies the relation \qquad
6. The path of a projectile is \qquad
7. A man pulls a mass of 100 kg and produces an acceleration of $2 \mathrm{~m} / \mathrm{sec}^{2}$, the force exerted is \qquad N.
8. The bodies rebound after impact are called. \qquad
9. The stress strain curve is a straight line up to \qquad
10. At neutral axis the \qquad stress is zero.

PART B

II. Answer ANY TEN questions

1. Explain the laws of static friction.
2. Sketch the stress strain diagram of mild steel.
3. Discuss the various types of equilibriums.
4. Define Hooke's law.
5. What are the sign conventions observed for drawing the Mohr's circle?
6. List the assumptions made in theory of simple bending.
7. State the moment area theorem.
8. Define Hoop stress and longitudinal stress. Give the expressions.
9. Differentiate bending stress and shear stress.
10. Derive the relation for power transmitted by a shaft.
11. Sketch the shear stress distribution for a rectangular section. How the maximum stress is calculated?
12. State the Lami's theorem.

PART C

III. Answer ANY SIX questions

$$
(6 \times 5=30 \text { marks })
$$

1. A triangle $A B C$ has it's sides $A B=40 \mathrm{mrn}$ along the positive X axis and side $B C=30 \mathrm{~mm}$ along positive Y axis. Three forces of $40 \mathrm{kgf}, 50 \mathrm{kgf}$ and 30 kgf act along the sides AB , BC and CA respectively. Determine the resultant of such a system of forces.
2. Find the moment of inertia of a rectangular section 60 mm wide and 40 mm deep about it's centre of gravity.
3. At a point in a bracket the stresses on two mutually perpendicular planes are $400 \mathrm{~N} / \mathrm{mm}^{2}$ and $300 \mathrm{~N} / \mathrm{mm}^{2}$ both tensile. The shear stress across these planes is $200 \mathrm{~N} / \mathrm{mm}^{2}$. Find the principal stresses and maximum shear at that point.
4. A mild steel tube 25 mm internal diameter, 32 mm external diameter, length 3 m is used as a strut, one end fixed, the other end hinged. Calculate the collapse load using $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$.
5. A cantilever 1.8 m span carries a uniformly distributed load of $25 \mathrm{kN} / \mathrm{m}$ over the right hand half. Construct the S.F.D and B.M.D.
6. A steel joist of I section 300 mm deep X 150 mm wide, has flanges 9.4 mm thick and web 6.7 mm thick. If the permissible stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$, find the safe uniformly distributed load that this section will carry over a simply supported span of 5 m .
7. A train of weight 100 tonnes is pulled by an engine on a level track at a constant speed of 445 kmph . The resistance due to friction is 1% of the train. Find the power of the engine.
8. A hollow circular shaft, 500 mm long, with an internal diameter of 40 mm and an external diameter of 80 mm , is rotating under a pure torque T. The maximum shear stress is $80 \mathrm{MN} / \mathrm{m}^{2}$, evaluate T and the angle of twist taking $\mathrm{G}=80 \mathrm{GN} / \mathrm{m}^{2}$.

PART D

IV. Answer ANY ONE question

$$
(1 \times 10=10 \text { marks })
$$

1. A King post truss of 8 m span is loaded as shown in Fig.1.

Fig. 1
Find the forces in the members and tabulate the results.
2. A simply supported beam A of 4 m span carries a uniform load of $30 \mathrm{kN} / \mathrm{m}$ over the right hand half o the span. Construct the S.F.D and B.M.D.

