KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2012 Admission
IV ${ }^{\text {th }}$ Semester Final Examination- July -2014

Cat. No: Basc. 2209
Title: Numerical Methods for Engineering Applications (1 +1)
Marks: 80
Time: 3 hours

Part-A

Answer all questions

$(10 \times 0.5=5)$

1) If α, β, γ are the roots of $x^{3}=7$, then $\sum \alpha=$ \qquad
2) If a is a repeated root of the polynomial equation $f(x)=0$, then $f(a)=$ \qquad $f^{\prime}(a)=$ \qquad
3) The order of convergence of Newton-Raphson method
a. 2
b. 1
c. 0
d. none
4) If c_{1} and c_{2} are two real and distinct roots of an auxiliary equation, then the complimentary function is. \qquad
5) While solving the equation $A X=B$, by Gauss elimination method A is transformed into \qquad matrix
a. An upper triangular
b. A lower triangular
c. A diagonal
d. A unit matrix
6) The $(n+1)^{\text {th }}$ difference of a $n^{\text {th }}$ degree polynomial is.
7) $E^{n} f(x)=$
8) By Euler's method , $y_{n}=$
9) How many positive roots are there for the equation $x^{3}+x^{2}+x-100=0$.
10) Newton's divided difference formula is applicable for \qquad spaced points
Part-B

Answer all questions

$(5 \times 1=5)$

1) State Newton-Raphson formula
2) Define the operators: Δ and ∇
.3) By trapezoidal rule, $\int_{a}^{b} f(x) d x=$, \qquad
3) Solve $y_{n+2}-4 y_{n+1}+4 y_{n}=0$
4) The system of equations $x+2 y+z=9,2 x+y+3 z=7$ can be expressed as
a. $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]=\left[\begin{array}{l}9 \\ 7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
b. $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{l}9 \\ 7\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
c. $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 7\end{array}\right]$
d. None of these

Part-C

Answer any 10 questions

1) Using bisection method find a real root of $x^{3}-9 x+1=0$
2) Using Newton -Raphson method $x^{3}-4 x+1=0$
3. Find the condition that the roots of the equation $x^{3}+p x^{2}+q x+r=0$ may be in a G.P. \&) Prove that the $3^{r d}$ divided difference with arguments a, b, c, d of the function $\frac{1}{x} i s \frac{-1}{a b c d}$
5) Prove that $\Delta^{3} y_{0}=y_{3}-3 y_{2}+3 y_{1}-y_{0}$
6) Evaluate $\int_{1}^{2} \frac{d x}{1+x^{2}}$ taking $h=0.2$ using the trapezoidal rule. Can you use Simpson's rule? Why?
${ }^{7}$ 7) Obtain the interpolation polynomial for the given data by using Newton's forward formula $\begin{array}{lcccc}x: & 0 & 2 & 4 & 6 \\ & y: & -3 & 5 & 21\end{array}$
7) Solve the difference equation $y_{n+3}-2 y_{n+2}-5 y_{n+1}+6 y_{n}=0$

↔) Using Taylor series method, find y at $x=0.1$, given $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$
10. Using Euler method, find $y(0.2)$ for the equation $\frac{d y}{d x}=y-x^{2}+1 ; y(0)=5$
11) Classify the equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{2 \partial^{2} f}{\partial x \partial y}+\frac{4 \partial^{2} f}{\partial y^{2}}=0$.
12) Using Gauss elimination method ,solve
a. $x+4 y-z=-5, x+y-6 z=-12,3 x-y-z=4$

Part-D

Answer any 6 questions

Di) Solve using Crout's method: $3 x+2 y+7 z=4,2 x+3 y+z=5,3 x+4 y+z=7$.
2) Using Gauss-Jordan method, solve the system of equations:

$$
3 x-y+2 z=12, x+2 y+3 z=11,2 x-2 y-z=2
$$

3) The population of a town is given below. Estimate the population in the year 1895 and 1925. year $(x): \begin{array}{ccccc}1891 & 1901 & 1911 & 1921 & 1931 \\ \text { population }(y): & 46 & 66 & 81 & 93\end{array}$
population (y) :
4666
8193
101

弮) By Newton's formula, find y as a polynomial in x from the following observations.

Also find $y(5) .$	$x:$	0	2	3	4	7	9
$y:$	4	26	58	112	466	922	

5) Evaluate $\int_{0}^{5} \frac{d x}{4 x+5}$ using Trapezoidal and Simpson's rule.
6) Using Taylor series method, find the value of $y(0.1)$ and $y(0.2)$, given $\frac{d y}{d x}=x^{2}+y^{2} ; y(0)=$.1 .
7) Prove the results (i) $E=e^{h D}$, (ii) $\mu \delta=\frac{\Delta E^{-1}}{2}+\frac{\Delta}{2}$
8) Solve the elliptic equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, at pivotal points of the following square mesh. $\quad 20 \quad 30$

Part-E

Answer any one question

1) Apply Runge-Kutta method of $4^{\text {th }}$ order to find the value of $y(0.1)$ and $y(0.2)$, if $y^{\prime}=x+y^{2} ; y(0)=1$.
2.) Using Crank-Nicholson method, solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ and $u(x, 0)=0, u(0, t)=0$ and $u(1, t)=t$, for two time steps.
