KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2012 Admission IV^{to} Semester Final Examination- July -2014

Cat. No: Basc.2209
Title: Numerical Methods for Engineering Applications (1+1)

Marks: 80 Time: 3 hours

itle: Numerical Methods for Engineering Applications (1+1)	Time: 3 ho
Part-A	
Answer all questions	$(10 \times 0.5 = 5)$
1) If α, β, γ are the roots of $x^3 = 7$, then $\sum \alpha = \dots$	
2) If a is a repeated root of the polynomial equation f	(x) = 0, then
$f(a) = \dots, f'(a) = \dots$	
3) The order of convergence of Newton-Raphson method	
a. 2	
b. 1	
c. 0	
d. none	
4) If c_1 and c_2 are two real and distinct roots of an auxiliary eq	quation, then the
complimentary function is	W. S. Landkannad
5) While solving the equation $AX = B$, by Gauss elimination method	A is transformed
into matrix	30
a. An upper triangular	
b. A lower triangularc. A diagonal	
d. A unit matrix	
6) The $(n+1)^{th}$ difference of a n^{th} degree polynomial is	
7) $E^n f(x) = \dots$	
8) By Euler's method, $y_n = \dots$	
9) How many positive roots are there for the equation $x^3 + x^2 + x - 100$	
10) Newton's divided difference formula is applicable for spaced p	ooints
Part-B	-1 - 55
1	x1=5)
1) State Newton-Raphson formula	
2) Define the operators : Δ and ∇	
3) By trapezoidal rule, $\int_{a}^{b} f(x)dx = \dots$	
4) Solve $y_{n+2} - 4y_{n+1} + 4y_n = 0$	

a.
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 7 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 7 \end{bmatrix}$$

d. None of these

Part-C

Answer any 10 questions

(10x3=30)

- 1) Using bisection method find a real root of $x^3 9x + 1 = 0$
- 2) Using Newton –Raphson method $x^3 4x + 1 = 0$
- 3. Find the condition that the roots of the equation $x^3 + px^2 + qx + r = 0$ may be in a G.P.
- Prove that the 3rd divided difference with arguments a,b,c,d of the function $\frac{1}{x}is\frac{-1}{abcd}$
- 5) Prove that $\Delta^3 y_0 = y_3 3y_2 + 3y_1 y_0$
- S) Evaluate $\int_{1}^{2} \frac{dx}{1+x^2}$ taking h = 0.2 using the trapezoidal rule. Can you use Simpson's rule? Why?
- 7) Obtain the interpolation polynomial for the given data by using Newton's forward formula x: 0 2 4 6y: -3 5 21 45
- **3**) Solve the difference equation $y_{n+3} 2y_{n+2} 5y_{n+1} + 6y_n = 0$
- (φ) Using Taylor series method, find y at x = 0.1, given $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0
- Using Euler method, find y(0.2) for the equation $\frac{dy}{dx} = y x^2 + 1$; y(0) = 5
- (1) Classify the equation $\frac{\partial^2 f}{\partial x^2} + \frac{2\partial^2 f}{\partial x \partial y} + \frac{4\partial^2 f}{\partial y^2} = 0$.
- 12) Using Gauss elimination method, solve

a.
$$x+4y-z=-5, x+y-6, z=-12, 3x-y-z=4$$

Part-D

Answer any 6 questions

(5x6=30)

- N) Solve using Crout's method: 3x + 2y + 7z = 4,2x + 3y + z = 5,3x + 4y + z = 7.
- 2) Using Gauss-Jordan method, solve the system of equations:

$$3x - y + 2z = 12$$
, $x + 2y + 3z = 11$, $2x - 2y - z = 2$.

- 3:) The population of a town is given below. Estimate the population in the year 1895 and 1925. year(x): 1891 1901 1911 1921 1931 population(y): 46 66 81 93 101
- By Newton's formula, find y as a polynomial in x from the following observations.

 Also find y(5). x: 0 2 3 4 7 9 y: 4 26 58 112 466 922
- **5**) Evaluate $\int_{0}^{5} \frac{dx}{4x+5}$ using Trapezoidal and Simpson's rule.
- G) Using Taylor series method, find the value of y(0.1) and y(0.2), given $\frac{dy}{dx} = x^2 + y^2; y(0.) = 1.$
- \Im) Prove the results $(i)E = e^{hD}$, $(ii)\mu\delta = \frac{\Delta E^{-1}}{2} + \frac{\Delta}{2}$
- **8**) Solve the elliptic equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, at pivotal points of the following square mesh.

20 30 40 50

Part-E

Answer any one question

(1x10=10)

- I) Apply Runge-Kutta method of 4th order to find the value of y(0.1) and y(0.2), if $y'=x+y^2$; y(0)=1.
- 2) Using Crank-Nicholson method, solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ and u(x,0) = 0, u(0,t) = 0 and u(1,t) = t, for two time steps.