KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2012 Admission

II $^{\text {nd }}$ Semester One time Special Re-Examination-June -2016
Cat. No: Basc. 1205
Marks: 80.00
Title: Engineering Mathematics-II (3+0)

L. Fill up the blanks:

1. Every sequence which is monotonic and bounded is \qquad
2. The general solution of equation $\frac{d y}{d x}=\frac{x}{y}$ is \qquad
3. The particular integral of $\frac{1}{\left(D^{4}+2 D^{2}+1\right)} \cos 2 x$ is
4. The solution of $p-q=1$ is
b) Match the following

A
5. One dimensional wave equation
6. One dimensional heat equation
7. Laplace equation
8. Legendre's equation

B

$$
(a x+b)^{2} \frac{d^{2} y}{d x^{2}}+A(a x+b) \frac{d y}{d x}+B y=f(x)
$$

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

c) Write True or False for the following
9. The general solution of series $\left(D^{2}-5 D+6\right) y=0$ is $y=A e^{2 x}+B e^{3 x}$
10. $z=p x+q y+p^{2}+q^{2}$ is the solution of the partial differential equation $z=a x+b y+a^{2}+b^{2}$

II Write short answers on any ten

1.Explain Rabee's test in the context of convergence of series
2. Solve $y d x-x d y=a y^{2} d x$
3. Solve $\left(D^{2}+4\right) y=\sin 2 x$
4. Solve $x \frac{d y}{d x}+y=x y^{3}$
5. Derive a partial differential equation $z=a^{2} x+b^{2} y+a b$ by eliminating arbitrary

Constants

6. Solve $p x+q y=3 z$
7. Solve $p^{2}+q^{2}=x+y$
8. Test the convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots .$.
9. Test the convergence of $\sum_{n=1}^{a} \frac{1}{\sqrt{n}+\sqrt{n+1}}$
10. Using the method of separation of variables solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$
11. Find steady state temperature distribution in a rod of length 30 cm , if the ends of the rod are Kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$
12. Write any two assumptions in deriving one dimensional wave equation

III Write short essays on any six

1. Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+9 y=\sec 3 x$
2. Solve the equation $\mathrm{py}=\mathrm{xp}^{2}+\mathrm{a}$ where $p=\frac{d y}{d x}$
3. Solve $\frac{\partial^{3} z}{\partial x^{3}}-3 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+2 y}$
4. Form a partial differential equation by eliminating arbitrary constants $x^{2}+y^{2}+(z-c)^{2}=r^{2}$
5. Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=e^{3 x}$
6. Show that $(2 x y+y-\tan y) d x+\left(x^{2}-x \tan ^{2} y+\sec ^{2} y+2\right) d y=0$ is exact and solve it
7. Test the absolute convergence of the series $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$.
8. Discuss the convergence of $\sum_{n=1}^{\alpha} \frac{n^{2}}{2^{n}}$

IV Write essay on any one

1. Derive one dimensional heat equation and solve it
2. Solve $(1-x)^{2} \frac{d^{2} y}{d x^{2}}-7(1-x) \frac{d y}{d x}+9 y=\frac{2}{(1-x)^{3}}$
\qquad
