KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2012 Admission IIndSemester One time Special Re-Examination-June -2016 #

it. No: Basc. 1205 le: Engineering Mathematics-II (3+0)		Marks: 80.0 Time: 3 hou
L Fill up the blanks:	$(10X^{tt}) = 10$	0)
ж ^с	- 20 - 8 8	~ <u>v</u>
1. Every sequence which is monotonic ar	d bounded is	
2. The general solution of equation $\frac{dy}{dx} =$	$\frac{x}{y}$ is	
3. The particular integral of $\frac{1}{(D^4 + 2D^2 + 2D^2)}$		
4. The solution of $p-q = 1$ is	*****	
Match the following		
A	В	
5. One dimensional wave equation	$(ax+b)^2 \frac{d^2 y}{dx^2} + A(ax+b)\frac{dy}{dx} +$	By = f(x)
6. One dimensional heat equation	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	
7. Laplace equation	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	
8. Legendre's equation	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	
Write True or False for the following		
9.The general solution of series (D ² -5D+6	$5)y = 0 \text{ is } y = Ae^{2x} + Be^{3x}$	
		2 2

10. $z = px+qy+p^2+q^2$ is the solution of the partial differential equation $z=ax+by+a^2+b^2$

II Write short answers on any ten

(10 X 3=30)

(6 X 5=30)

- 1.Explain Rabee's test in the context of convergence of series
- 2. Solve $ydx-xdy = ay^2dx$
- 3. Solve $(D^2+4)y=\sin 2x$
- 4. Solve $x \frac{dy}{dx} + y = xy^3$
- 5. Derive a partial differential equation $z = a^2x + b^2y + ab$ by eliminating arbitrary

Constants

- 6. Solve px+qy= 3z
- 7. Solve $p^2+q^2=x+y$
- 8. Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$
- 9. Test the convergence of $\sum_{n=1}^{a} \frac{1}{\sqrt{n} + \sqrt{n+1}}$
- 10. Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$
- Find steady state temperature distribution in a rod of length 30 cm, if the ends of the rod are Kept at 20^oC and 80^oC
- 12. Write any two assumptions in deriving one dimensional wave equation
- III Write short essays on any six

1. Solve by method of variation of parameters $\frac{d^2y}{dx^2} + 9y = \sec 3x$

2. Solve the equation $py = xp^2 + a$ where $p = \frac{dy}{dx}$

3. Solve
$$\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x+2y}$$

4. Form a partial differential equation by eliminating arbitrary constants $x^2+y^2+(z-c)^2=r^2$

5. Solve $\frac{d^2y}{dr^2} + 4\frac{dy}{dr} + 4y = e^{3x}$

6. Show that $(2xy+y-tany)dx+(x^2-xtan^2y+sec^2y+2)dy = 0$ is exact and solve it

7. Test the absolute convergence of the series $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$

8. Discuss the convergence of $\sum_{n=1}^{\alpha} \frac{n^2}{2^n}$

IV .Write essay on any one

(10X1=10)

- 1. Derive one dimensional heat equation and solve it
- 2. Solve $(1-x)^2 \frac{d^2 y}{dx^2} 7(1-x)\frac{dy}{dx} + 9y = \frac{2}{(1-x)^3}$