KERALA AGRICULTURAL UNIVERSITY B.Tech (Agrl.Engg) 2011 Admission IInd Semester Special Re- Examination-June -2015

Cat. No: Math.1202 Title: Engineering Mathematics -II (3+0)

<u>PART – I</u> Answer all the questions:

 $5 \ge 4 = 20$ marks

Marks: 80.00

Time: 3 hours

- 1. Using Cauchy's root test, test the convergence of a series $\sum 1/(\log n)^n$
- . 2. Find the half range Fourier series for f(x) = x in the interval 0 < x < 2.
- . 3. Form the partial differential equation by eliminating the arbitrary constants from the equation $z = x^2/a^2 + y^2/b^2$
- 4. Find the analytic function whose imaginary part is $e^{-x}(x\cos y + y\sin y)$.
 - 5. Evaluate $\int f(z) dz$ over the circle C is |z+1+i| = 2, where $f(z) = (z-3)/(z^2+2z+5)$.

<u>PART – II</u> <u>Answer any 5 the questions:</u>

$5 \times 6 = 30 \text{ marks}$

- 1. Find the Fourier series expansion of $f(x) = (\pi^2 x^2)$, in the interval $(-\pi, \pi)$.
- . 2. Find the half range Fourier series for f(x) = |x|, in the interval (-*l*, *l*).
 - 3. Discuss the transformation $w = \cosh z$.
 - 4. Using Cauchy's theorem and Cauchy's integral formula, evaluate $\int (z^2-z+1)dz/(z-1)$ over the circle C is (a) |z| = 1, (b) $|z| = \frac{1}{2}$
 - 5. Solve: (mz-ny)p + (nx-lz)q = (ly-mx)
 - 6. Solve the equation $u_t = \alpha^2 u_{xx}$ subject to the boundary conditions u(0,t) = 0, u(l,t) = 0, and u(x,0) = x.

7. Expand f(z) = 1/[(z-1)(z-2)] in the region $1 \le |z| \le 2$.

<u>PART – III</u> Answer all the questions:

$2 \times 15 = 30 \text{ marks}$

1. (a) Find the Fourier series expansion of f(x) defined in $(0, 2\pi)$ from the following table up to first harmonic.

x	0	π/3	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

(b) Solve: $(p^2 + q^2)y = qz$ by Charpit's method.

(**or**)

- (a) Show that the function f(x) = x iy is nowhere differentiable.
- (b) Convert $\int d\theta/(5+4\cos\theta)$ with limits 0 to 2π into contour integral.
- 2. (a) Find the complex form of the Fourier series of $f(x) = e^{k+x}$ in the interval $(-\pi,\pi)$.
 - (b) Discuss the transformation w = cz.

(or)

- (a) Solve $(D^2 DD' 6D'^2)z = \cos(2x+y)$
- (b) Evaluate $\int \log z \, dz$, over the circle C is |z| = 1.