KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food. Engg) Programme

II ${ }^{\text {nd }}$ Semester Re-Examination- June -2014

Cat. No: Fden. 1202
Title: Heat and Mass Transfer (1+1)
Marks: 80
Time: 3 hours

1. Answer the following :-
1.Define quantum theory
2. Thermal conductivity
3. Heat exchanger
4. Define emissivity
5. Fourier law
6. Define Stefan Boltzmann's law
7. Differentiate grayboody and blackbody
8. Differentiate reffectivity and absorptivity
9. Define Flick's law of diffusion
10. Define critical thickness
II. Write short notes/answer on ANY TEN.
11. Classification of heat exchangers
[$10 \times 3=30$]
12. Analogy between heat transfer and mass transfer
13. Give the application of forced convection
14. Derive the expression for mean area of cylinder.
15. Derive the expression for heat transfer through a sphere
16. Discuss the concept of black body
17. Differentiate steady state and quasi state flow of heat conduction.
18. Overall heat transfer coefficient.
19. What do you mean by scaling of heat exchangers?
20. Explain the electromagnetic spectrum.
21. Absorbtivity, reflectivity and transmissivity.
22. The heat transfer through insulation materials is affected by inside convection compared with inside conduction-comment.

III. Answer ANY SIX

$$
[6 \times 5=30]
$$

1. Obtain the expression for log mean temperature difference (LMTD) equation for a single pipe double pass counter flow heat exchanger.
2. Prove that heat lost per square meter with reference to outer surface of a hollow
cylinder is $2 \mathrm{~K}(\mathrm{~T} 1-\mathrm{T} 2) \mathrm{D} 2 \log$ (D2/D1) where T1 and T2 are temperatures and D1 and D2 are inner and outer diameter.
3. Derive the formula for heat transfer between two fluids through a composite wall.
4. 45 kg of oil flows through a 25 mm internal diameter copper tube in one second. The oil - at the flow condition are specific heat $=0.49 \mathrm{kcl} / \mathrm{kg}^{*} \mathrm{C}$, Thermal conductivity $=0.125 \mathrm{kcl} / \mathrm{hr} \mathrm{m}{ }^{*} \mathrm{C}$ Kinematic viscosity $=0.901 \times 103$, Density $=880 \mathrm{~kg} / \mathrm{m} 3$
calculate the convection heat transfer coefficient using Nnu $=0.023 \mathrm{NRe} \mathrm{Npr}$
5. Fruit juice having a specific heat of $3.85 \mathrm{kj} / \mathrm{kg}{ }^{*} \mathrm{~K}$ is being pre heated from $5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ in a counter flow double pipe heat exchanger. Heating agent is hot water entering at $75^{\circ} \mathrm{C}$ and leaving at $65^{\circ} \mathrm{C}$. The flow rate of fruit juice is 1.5 kg ?sec and the area of the heat exchanger is 10.0 square metre. Calculate the overall heat transfer coefficient.
6. A cold storage room wall $3 \mathrm{mx6m}$ is constructed of 150 mm thick concrete $\mathrm{K}=1.37$ $\mathrm{W} / \mathrm{m}{ }^{*} \mathrm{C}$. Insulation must be provided to maintain a heat transfer rate through the wall at or below 500 W . If the thermal conductivity of insulation is $0.04 \mathrm{~W} / \mathrm{m}{ }^{*} \mathrm{C}$, compute the required thickness of insulation, The outside surface temperature of the wall is $38^{\circ} \mathrm{C}$, and the inside wall temperature is $5^{\circ} \mathrm{C}$.
7. Derive the formula for optimum thickness of lagging for a pipe of inside diameter d1.
8. A hollow sphere with inner radius Ri , outer radius Ro , inner and outer surface temperature ti and to is made of a material whose thermal conductivity is K. Derive the expression for the conducted heat loss based on the outer area. If $\mathrm{Ri}=75 \mathrm{~mm}$, $\mathrm{Ro}=125 \mathrm{~mm}, \mathrm{~K}=52 \mathrm{~W} / \mathrm{m} * \mathrm{~K}$, heat conducted out from the sphere is 118500 w and inside temperature is $400^{\circ} \mathrm{C}$, determine outside surface temperature.
iv. Answer ANY ONE only.
9. Derive the general heat conduction equation in spherical co-ordinates.
10. A furnace wall is composed of 22 cm fire brick, 15 cm common brick, 5 cm of 85% magnesia and 3 mm steel plate on the outside. If the inside surface temperature is $1500^{*} \mathrm{C}$ and the outside surface temperature is $90^{*} \mathrm{C}$. Estimate the temperature between the layers and calculate the heat loss. K for fire brick $1.0 \mathrm{~W} / \mathrm{m} * \mathrm{~K}$, common brick $0.7 \mathrm{~W} / \mathrm{M}^{*} \mathrm{~K}$, magnesia $-0.06 \mathrm{~W} / \mathrm{m}^{\star} \mathrm{K}$ and for steel $45 \mathrm{w} / \mathrm{m}^{\star} \mathrm{K}$.
