KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2013 Admission

II ${ }^{\text {nd }}$ Semester Final Examination- June -2014
Cat. No: Basc. 1205
Marks: $\mathbf{5 0 . 0 0}$
Title: Engineering Mathematics -II (3+0)
Time: 2 hours

Part I

I Answer all the Questions

1. An infinite series of positive terms is said to be \qquad $10 \times 1=10$ finite quantity. convergent if its sum is a
2. For the series $\mathrm{u}_{1}+\mathrm{u}_{2}+\ldots+\mathrm{u}_{\mathrm{n}}+\ldots$, the condition $\underset{n \rightarrow \infty}{\operatorname{Lt}} u_{n}=0$ is a necessary condition. (True/ false)
3. If $\operatorname{Lt}_{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=0$ and $\sum v_{n}$ is convergent, then $\sum u_{n}$ is also \qquad
4. Equations in which an unknown function, and its derivatives r differential is occur are called
5. Given the differential equations $M(x, y) d x+N(x, y) d y=0$. When $M x+N y \neq 0$ and the equation is homogeneous one, \qquad is an integrating factor.
6. The general \qquad , c being the parameter
7. Bessels function of order n of the second kind is also called the \qquad
8. Partial differential equation may be formed by eliminating of \qquad from the given relation between the variable.
9. $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ is \qquad in two dimensions
10. The state in which temperature does not vary with respect to time t is called \qquad

Part II

II Write short notes on any FIVE questions

- $\quad(5 \times 2=10)$

1 Define oscillatory series.
2. Explain the rules for solving $\mathrm{Mdx}+\mathrm{Ndy}=0$ when it is exact.
3. Define Legendre's polynomial $\mathrm{Pn}(\mathrm{x})$
4. Define Bessel's function of the first kind of order n
5. Explain the working rule while using Charpits method.
b. Solve $p^{2}-7 p+12=0$
7. Write any two solutions of the Laplace equation $\mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=0$ involving exponential terms in x or y .

Part III

III Write short notes on any FIVE questions

1. Examine the convergence of the series $\frac{1.2}{3^{2} \cdot 4^{2}}+\frac{3.4}{5^{2} \cdot 6^{2}}+\frac{5.6}{7^{2} \cdot 8^{2}}+\ldots$
2. Test for the convergence the series whose general term is $\left(1-\frac{1}{n}\right)^{n^{2}}$
3. Solve $\cos x \frac{d y}{d x}-y \sin x=y^{3} \cos ^{2} x$
4. Explain the rules for finding integrating factors.
5. Solve $\frac{d x}{d t}-\frac{d y}{d t}-y=-e^{t}, x+\frac{d y}{d t}-y=e^{2 t}$
6. Solve $\mathrm{p}^{2}+2 \mathrm{pycotx}=\mathrm{y}^{2}$.
7. Obtain the solution of the two dimensional Laplace equation using the method of separation of variables.

Part IV

IV Write essay on ANY ONE

$$
1 \times 10=10
$$

1. Explain the method of variation of parameters.
2. A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $U(x, 20)=x$ $(20-x)$ when $0<x<20$ while the other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature in the plate.
